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This thesis embarks on a critical examination of transformer-based models optimized for
the financial sector under computational constraints. The study systematically explores
the adaptability and performance of various transformer architectures, including BERT,
Reformer, and a custom-designed reversible dilated BERT, in handling domain-specific
financial texts. A significant portion of this research is dedicated to the process of pre-
training these models on specialized datasets to ascertain their effectiveness in financial
sentiment analysis and topic classification tasks.

The findings indicate a nuanced landscape where the adjusted architectures, such as
the Reformer and the reversible dilated BERT, show limited benefits in environments
constrained by resources, particularly with smaller models and shorter sequence lengths
of 128 tokens. This observation suggests that the potential advantages of these architec-
tural modifications become more pronounced with longer sequence lengths, which were
not the focus of this study due to the imposed hardware limitations.

Conversely, the Electra pretraining method, applied to the BERT model, demonstrated
a promising pathway towards achieving high efficiency and robust finetuning outcomes
within the specified constraints. This approach underscores the feasibility of deploying
sophisticated NLP models in the financial sector, even when computational resources
are limited, by leveraging domain-specific pretraining strategies.

Through a detailed analysis and comparison of transformer model architectures and their
pretraining and finetuning performance, this thesis contributes valuable insights into the
development of efficient NLP solutions tailored to the financial industry. It highlights
the critical balance between model complexity, computational resource availability, and
the specific requirements of financial NLP tasks, offering guidance for future research in
this vital intersection of technology and finance.
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of inputs and [SEP] to separate segments like questions and answers, are
used in the process (Devlin et al. (2018)). . . . . . . . . . . . . . . . . . . 36

13 Sliding window attention. Each tokenxi only attends to its local neigh-
borhood. In this case w = 6 (Beltagy, Peters, and Cohan (2020)). . . . . . 42

14 Dilated sliding window attention with w = 6 and d = 2. There is a gap of
d− 1 = 1 between each token in the local neighborhood (Beltagy, Peters,
and Cohan (2020)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

15 Global attention combined with sliding-window attention for w = 6, L =
{0, 1, 5, 15} and d = 1. The first row is the corresponding [CLS]-token
which uses global attention to capture the information of the whole input
sequence (Beltagy, Peters, and Cohan (2020)) . . . . . . . . . . . . . . . . 45

16 LSH attention algorithm: The sequence is hashed into buckets, then
sorted according to their bucket number and position in the bucket. Fol-
lowing this the sequence is chunked into parts of length m. As shown
queries outside a chunk can only attend backward. . . . . . . . . . . . . . 46

17 The forward pass of a reversible block (Gomez et al. (2017)). Based on
equation 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

18 The recomputation of the input activations a reversible block (Gomez et
al. (2017)). Based on equation 32. . . . . . . . . . . . . . . . . . . . . . . 49

19 The computational graph of a reversible block. . . . . . . . . . . . . . . . 50
20 Distinguishing between generative and discrimnative models. As we can

see discriminative models from a decision boundary and learn the map-
ping between input and labels directly, while generative models learn the
distribution on which a classification can be done afterwards (Google De-
velopers (2022)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

21 Replaced token detection in Electra. Masked tokens are replaced with
generator predictions. The discriminator learns to recognize generated
tokens. After pretraing only the discriminator is used (Clark et al. (2020)). 55

8



22 Overall loss, train discriminator and train generator loss . . . . . . . . . . 63
23 Overall loss, train discriminator and train generator loss . . . . . . . . . . 64
24 Overall loss, train discriminator and train generator loss . . . . . . . . . . 65

25 Financial sentiment finetuning results . . . . . . . . . . . . . . . . . . . . 67
26 Financial topic finetuning results . . . . . . . . . . . . . . . . . . . . . . . 69

9



Nomenclature

W Bold capitalized letters. Matrices, Tensors or Layer of a neural network. They
are bold when they consist of learnable parameters.

A Cap letters. Input or Output of functions, transformations, projections or layers.
They do not consist of learnable parameters.
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1 Introduction

The advent of deep learning has precipitated unparalleled advances across various do-
mains of artificial intelligence, notably in natural language processing (NLP). This surge
in innovation has been significantly propelled by the development of transformer mod-
els, which have set new benchmarks for a plethora of language-related tasks. How-
ever, as these models grow in complexity and size, they increasingly demand substantial
computational resources, raising critical challenges for their application within environ-
ments constrained by hardware limitations. This thesis, titled ”Assessing Efficiency in
Domain-Specific Transformer Models: Comparing, Pretraining, and Finetuning Small-
Scale Transformer Models within Hardware Limitations for Financial NLP”, seeks to
navigate these challenges, focusing on NLP in the financial sector.

Financial NLP, a subfield that applies NLP techniques to interpret and analyze financial
texts, demands high accuracy and rapid processing speeds due to the time-sensitive and
complex nature of financial data. The precision of models in this domain can signifi-
cantly impact decision-making processes in finance, underscoring the need for efficient
and effective model architectures. This work embarks on a comparative study of vari-
ous transformer model architectures, including the Reformer, Plain BERT, and a novel
reversible dilated BERT, examining their pretraining and finetuning efficacy within the
constraints of limited computational resources.

At the heart of this investigation is the exploration of domain-specific pretraining on
financial texts, an approach that tailors the model’s learning to the intricacies and nu-
ances of financial language. This specificity is crucial for enhancing model performance
in domain-specific tasks, where general-purpose models may not capture the unique char-
acteristics of financial discourse. The thesis meticulously evaluates the computational
efficiency and model performance trade-offs, aiming to identify strategies that maximize
accuracy without compromising on resource demands.

Additionally, the research delves into the Electra pretraining method, applied to the
BERT model, to examine its potential for optimizing finetuning processes in a resource-
constrained setting. By focusing on the discriminator component of the Electra model,
this study offers insights into leveraging pretraining techniques that require fewer com-
putational resources while maintaining, or even enhancing, model performance.

Through a detailed analysis of foundational concepts such as tokenization, embeddings,
the challenges of recurrent neural networks (RNNs), and the transformative impact
of attention mechanisms, this thesis sets the stage for a comprehensive exploration of
transformer models in financial NLP. It aims to contribute to the ongoing discourse on
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optimizing NLP models for specialized domains, addressing the critical balance between
computational efficiency and model effectiveness.

This introduction chapter outlines the motivation, objectives, and structure of the thesis,
setting the foundation for a deep dive into the complexities and innovations at the
intersection of transformer models, financial NLP, and hardware constraints. It frames
the research within the broader context of AI advancements, highlighting the significance
of efficient model design and domain-specific adaptation in pushing the boundaries of
what is possible in NLP.
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2 Foundation

2.1 Tokenization in NLP

NLP is fundamentally concerned with enabling computers to understand and process
human languages. To achieve this, one of the initial steps involves converting the raw
text into a format that can be easily interpreted by algorithms. This process is known
as tokenization. Tokenization is the task of chopping up text into pieces, called tokens,
which are semantically useful units such as words, phrases, or symbols (Mielke et al.
(2021)). The choice of tokens is a critical step in NLP as it directly affects the represen-
tation of input data and the subsequent layers of processing.
In the early stages of text processing, tokenization was often as simple as splitting text by
whitespace and punctuation marks. However, such a naive approach can be insufficient
for understanding the complexities of language, where the meaning can be significantly
altered by morphology and syntax. For instance, ”dogs” should be related to ”dog”,
and ”talked” to ”talk”, but simple whitespace-based tokenization would treat each as
a distinct token without any relationship to one another. Another issue was how to
deal with punctuation. Looking at the word ’don‘t’, we can split it in three distinct
parts (’do’, ’‘’, ’t’) or not split it at all. It was argued that the best way to split this
word was into two pieces ’do’ and ’n‘t’ (Mielke et al. (2021)). This led to the upcom-
ing of various tokenization techniques, each using its own approach to split words into
character-sequences. Most methods can be split into three groups:

• Whitespace-delimited pre-tokens

• Learned subwords

• Byte based encoding

The granularity of the tokens increases with each new technique, meaning the byte-based
encodings have the highest granularity.1 Each approach is better suited for different
tasks. Some tasks need very granular tokens while others emphasize the interpretability
and efficiency of larger tokens (Mielke et al. (2021)). Each token is assigned a unique
ID such that same tokens receive the same ID. Once tokenization is complete, the next
challenge is to represent these tokens numerically so that they can be processed by
algorithms. Important

1The higher the granularity the fewer number of characters per token.
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2.2 Word Embeddings

One common approach to represent the tokens is to use one-hot-encoding vectors which
are of size G where G = number of tokens. The vector consists of all zeros but a one
at the index i ∈ 1, 2, . . . G of the current token. This method, while straightforward,
results in extremely high-dimensional and sparse vectors that are inefficient in terms of
both storage and computation. More critically, one-hot encoded vectors fail to capture
any semantic information; every word is equidistant from every other word in this space,
making it impossible for models to learn the semantic relationships and similarities
between words. This semantic gap is where word embeddings come into play, offering a
dense and semantically rich alternative.

Word embeddings are a class of techniques where individual words are represented as
fixed-length vectors in a predefined vector space. Each word is mapped to one vector.
The embeddings capture the semantic properties of words, such that words that are
semantically similar are located in close proximity to one another in the embedding space.
An important feature of these embeddings is that the ’raw word vectors are first projected
onto a so-called embedding layer before being fed into other layers of the network’
(Almeida and Xexéo (2019a)). There are multiple ways to obtain these representations,
famous ones are continuous bag-of-words, skip-gram, or Word2Vec (Almeida and Xexéo
(2019b)).When building a new model, embedding layers and word representations are
either learned from scratch by training the whole model or pretrained embeddings are
used.

2.3 Recurrent Neural Networks and its problems

2.3.1 Introduction to Recurrent Neural Networks

Neural networks, since their inception, have been instrumental in advancing the field of
machine learning. However, traditional feedforward neural networks have a significant
limitation: they assume that all inputs and outputs are independent of each other. In
many real-world scenarios, this is not the case. This can be especially stated for language.
Recurrent neural networks (RNNs) are neural networks for modeling dependent data.
The network structure is similar to a classic feedforward neural network, but we allow
connections between hidden units associated with a time delay. Using these, the model
can receive information about the past and learn temporal relations between inputs that
are possibly far away from each other in the data.(Pascanu, Mikolov, and Bengio (2012a))
For a given input xt (which is usually not the word itself but rather an embedding), the
hidden state at time t denoted as ht, is updated using the previous hidden state ht−1, the
current input xt, and a bias term b. The matrices Wh and Wx represent the weights
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applied to the hidden state and the input, respectively, and σ denotes the activation
function, typically a sigmoid or tanh function:

ht = Whσ(ht−1) +Wxxt + b (1)

xt ht

Wx

Wh

yt

Figure 1: Schematic visualization of a RNN cell.

Important to note is that the input at t = 0, i.e. x0, is provided by the user, set to
zero, or learned. The parameters are shared across time (Pascanu, Mikolov, and Bengio
(2012a)).

To understand the usage of the hidden states, an unrolled version of the recurrent neural
network for a given timestep t, its predecessor t− 1, and its successor t+ 1 is shown in
Figure 2.
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xt−1

ht−1

yt−1

Wx

xt

ht

yt

Wh

Wx

xt+1

ht+1

yt+1

Wh

Wx

Figure 2: Unrolled RNN for three time steps by creating a copy for each time step (Pascanu,
Mikolov, and Bengio (2012b)). The hidden output of time step t − 1 is input for
the hidden state at t and so on. This is how the temporal information gets passed
through the network.

RNNs use these recurrent blocks and stack multiples of them combined with feedforward
layers to create the final model. The model can be used in sequence-to-sequence tasks
by using the hidden state outputs at each time-step t, or sequence-to-class, by using only
the final output of the model. Usually, the input data is encoded into word-embeddings
before passing it to the RNN.

2.3.2 Training of RNNs

To train the RNN and compute the gradients, a technique known as Backpropagation
through time (BPTT) is used. The unrolled visualization of the RNN, as we saw in
Figure 2 is solely done for simplification. However, it provides valuable insights into how
BPTT works. In BBTT the recurrent model is represented as a multi-layer feedforward
model by unrolling it as shown in Figure 2. Backpropagation is then applied on the
unrolled model (Pascanu, Mikolov, and Bengio (2012b)).

2.3.3 Vanishing and Exploding Gradient Problem in Recurrent Neural
Networks

RNNs are recognized as potent tools for processing sequential data, owing to their intrin-
sic ability to remember past inputs. However, like all models, they have their challenges.
A notable difficulty they encounter is learning long-term dependencies. Specifically, if
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pertinent information within a sequence is spaced far apart, an RNN may find it chal-
lenging to link and capitalize on this information. This issue can be traced back to the
vanishing gradient problem.

Deep neural networks often grapple with the vanishing gradient problem, where the
gradients associated with long-range relations diminish exponentially fast, approaching
zero in norm. The exploding gradient problem describes the opposite behavior. It occurs
when the gradient norm of long-term components increases exponentially more than the
short-term ones (Pascanu, Mikolov, and Bengio (2012b)). These challenges intensify in
the context of RNNs. The reason is that gradients in RNNs are influenced not only
by the ”depth” of the network but also by the sequence’s ”time” dimension (Vennerød,
Kjærran, and Bugge (2021)). Technically speaking, the hidden output zi of the model
at layer i is a function of all the outputs from previous layers zj for j ∈ {i − 1, i − 2,
. . . , 0} where i is the model’s layer index, establishing the dependency. Furthermore,
the RNN also depends on prior hidden states ht for t ∈ {t − 1, t − 2, . . . , 0}, with t
signifying the time-step of the recurrent unit. This interdependence is more complex
than that observed in standard neural networks. Consequently, the early layers or time
steps receive negligible gradient updates, rendering the network unable to learn and
adjust its weights effectively for distant past inputs.

To overcome the challenges of capturing long-term dependencies in RNNs, researchers
developed several innovative solutions that have since gained widespread acceptance in
the field. Notably, the Long-Short-Term-Memory (LSTM) and the Gated-Recurrent-
Unit (GRU) stand out, both categorized under the broader umbrella of Gated Neural
Networks (GNNs). At the heart of GNNs lies the principle of using gating mechanisms
to control the information flow across layers or sequences (Hu et al. (2018)). These
gates enable the network to more effectively identify, retain, and utilize pertinent infor-
mation over extended sequences. It’s worth noting that both GRU and LSTM archi-
tectures maintain compatibility with the input-output conventions of traditional RNNs.
This compatibility allows for seamless substitution of RNN blocks within a given model
without necessitating structural modifications. However, this work focuses on attention
mechanisms. In the ensuing section, we will explore how RNNs, when augmented with
attention, present a promising avenue to address the longstanding issues of vanishing
and exploding gradients.

2.4 Attention in Recurrent Neural Networks

2.4.1 Encoder-Decoder RNNs

RNNs are well-suited for sequence-to-sequence tasks, with machine translation being
a prime example of their application. Traditional RNNs, including their variants like
GRUs and LSTMs, have been pivotal in these domains. Despite their capabilities, these
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networks often struggled with complex sequences, leading to suboptimal performance in
certain contexts.

To address these limitations, the Encoder-Decoder RNN architecture was introduced.
This innovative approach involves two coupled RNNs: the encoder and the decoder.
The encoder processes the input sequence and compresses the information into a context
vector, a fixed-length representation capturing the essence of the input data. The decoder
then takes this vector and reconstructs a variable-length target sequence from it. The
underlying strength of this model lies in its ability to maintain and manipulate the
temporal dependencies within the data. The original authors of the Encoder-Decoder
RNN framework succinctly describe the process: “[t]he encoder maps a variable-length
source sequence to a fixed-length vector, and the decoder maps the vector representation
back to a variable-length target sequence. The two networks are trained jointly to
maximize the conditional probability of the target sequence given a source sequence”(Cho
et al. (2014a)). So the goal of this architecture is to create a hidden representation c of
the input data, which summarizes the information and its temporal dependency. The
decoder accordingly, is trained to generate the output sequence by predicting the next
symbol yt given hdect . Note that hdect also depends on the previous hidden state hdect−1

, the previous output yt and the summarized representation of the input c (Cho et al.
(2014b)). Technically speaking, hdect and yt can be described by the functions f and g
as follows:

hdect = f(hdect−1, yt1 , c) (2)

yt = g(hdect , yt1 , c) (3)

For a more intuitive grasp of this architecture, refer to Figure 3, which visualizes the
Encoder-Decoder RNN framework.
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Figure 3: Visualization of an Encoder-Decoder RNN. The representation vector c gets passed
through every hidden state ht of the Decoder. Note that only three hidden states
were used here for simplification, but in real scenarios these can be extended to
much larger sequences.

The model is trained using a any gradient based algorithm since all parameters are
differentiable.

2.4.2 Attention based Encoder-Decoder RNNs

The Encoder-Decoder RNN framework, while powerful, has its limitations, particularly
when dealing with long input sequences. The model’s performance tends to degrade
because the fixed-length context vector c becomes an information bottleneck. As se-
quences grow longer, it becomes increasingly challenging for the encoder to compress all
the necessary information into a single vector (Bahdanau, Cho, and Bengio (2016a)). It
was demonstrated that the efficacy of a standard encoder-decoder model declines sharply
with the extension of the input sentence length (Bahdanau, Cho, and Bengio (2016a)).

To address this limitation, Bahdanau et al. introduced an innovative architecture that
redefines the context vector’s role. Rather than relying on a single, static representation
vector c, their model calculates a distinct context vector ct for each decoding step. This
approach allows each hidden state hdect in the decoder to be dynamically influenced
by a function f of the preceding step hdect−1, the evolving context vector ct and previous
predicted output yt−1 (Bahdanau, Cho, and Bengio (2016b)). Consequently the updated
functions for the output yt and hidden stated ht are expressed as:

hdect = f(hdect−1, yt1 , ct) (4)
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yt = g(hdect , yt1 , ct) (5)

The introduction of the variable context vector ct marks a departure from the earlier
equations (2) and (3), where a single, unchanging context vector was used. The context
vector ct is computed as:

ct =

Tx∑
i=1

αtih
enc
i (6)

and
αti =

exp eti∑Tx
k=1 exp etk

(7)

where
eti = ARNN (henci , h

dec
t−1 ) (8)

Looking at equation 6 one can see that the context vector ct is a weighted sum of the
encoder hidden states henci . The score eti is computed by the alignment model ARNN ,
which evaluates how well each encoder hidden state henci , at each time-step i in the input
sequence, aligns with the previous decoder hidden state hdect−1 . The authors implement
a as a fully connected feedforward layer. The alignment score helps to determine the
focus of the decoder on different parts of the input sequence when generating the t− th
word of the output sequence. The attention weights αti are then derived by applying a
softmax function to the scores eti , which creates a normalized probability distribution
representing the relevance of each input sequence word to the current output (Bahdanau,
Cho, and Bengio (2016b)).

To sum up, the proposed approach computes a dynamic context vector at each time-
step, representing a weighted sum of all encoder hidden states. This enables the model
to adaptively learn which input data points to attend to for predicting each element
of the output sequence. Such an approach not only addresses the challenge of long-
term dependencies—which are particularly problematic for traditional RNNs—but also
mitigates the issues of vanishing and exploding gradients to a certain extent by providing
shortcut connections through the attention mechanism. Moreover, it moves beyond
the limitations of a single fixed representation of the input sequence, introducing a
flexible context that varies according to the position in the output sequence. This
innovation allows for more nuanced and effective handling of sequences, particularly as
they increase in length. From now on this mechanism will simply be termed ’attention.’
The intricacies of this process are illustrated in Figure 4. Furthermore, attention enables
the interpretation of the relationship between input and predicted data. By examining
which inputs the model focuses on—or the attention scores αti in equation 7, i.e. the
weights to determine ct—one can glean insights into language structures and the model’s
learning patterns. For an example refer to Figure 5.
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Figure 4: Simplified visualization of an attention backed Encoder-Decoder RNN. One can see
that ci is influenced by all encoder hidden states over αti. Input length Tx and
output length Ty may differ. To maintain a clear overview, the connections from the
encoder hidden states to each context vector are left out. In this step the weighted
sum of the encoder hidden states would be computed.
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Figure 5: Attention scores from english-french translation. Each output word (french) attends
to all the input words (english) to a specific degree. The brighter the cell αti, the
higher the attention score between word t and i. (Vaswani et al. (2017a)
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2.5 Attention is all you need

2.5.1 Introduction

In the preceding chapter, we explored the emergence of attention mechanisms as a pow-
erful tool to augment RNNs. By enabling models to dynamically focus on different
parts of the input sequence for each output, attention-backed RNNs, such as those using
LSTM or GRU architectures, significantly improved the ability of neural networks to
capture long-range dependencies and contextual nuances in sequence data.

Building upon the limitations of RNNs, which are constrained by their sequential com-
putation thus hindering parallelization, the next evolutionary step comes in the form of
the transformer model. Introduced by Vaswani et al. in the seminal paper ”Attention
is All You Need”, this model signifies a departure from traditional sequence processing
methods entirely. They are mentioning the rising role of attention mechanisms in the
field of sequence-to-sequence modelling, but are emphasizing that these are almost al-
ways used in conjunction with recurrent networks. Consequently, they are proposing a
model solely based on attention mechanisms to draw global dependencies between in-
put and output (Vaswani et al. (2017b)). By relying only on attention mechanisms —
without any recurrence — transformers marked the beginning of a new era in sequence
modeling.

2.5.2 Model architecture

The transformer follows the structure of Encoder-Decoder RNNs. The encoder consists
of six identical layers N stacked on top of each other. Each layer is divided into two dis-
tinct parts: the first part is a multi-head self-attention mechanism, and the second part
is a straightforward feed-forward neural network that connects positions. To improve
the flow of information through these layers, each one incorporates a residual connection
2, which is then normalized by a layer normalization process. 3. This means the output
from each part of the layer is the normalized sum of the input and the processed input.
Additionally, to support these residual connections, every sub-layer, including the em-
bedding layers, is designed to output data in a 512-dimensional space. (Vaswani et al.
(2017a)).

The decoder in the transformer architecture mirrors the encoder’s structure with six
identical layers. Each decoder layer includes three sub-layers: two are similar to the
encoder layers, and a third sub-layer is added for multi-head attention over the encoder’s

2Residual connections add the input of the layer to the output to ease information flow and prevent
vanishing gradients. Let x be the input and f the output mapping. Then a residual connection can
be described as z = f(x) + x. For further information see arxiv.org/abs/1512.03385

3Layer normalization computes normalization statistics for each individual layer across features, un-
like batch normalization which computes across the batch dimension. For further information see
arxiv.org/abs/1607.06450
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output. Residual connections, followed by layer normalization, are also a part of the
decoder design. The decoder uses the encoder output as input. That is how the input
information gets passed to the encoder. The decoder generates one output at a time. It
utilizes the prior outputs and the encoder output. To ensure that the decoder respects the
correct order of sequence generation, a masking technique is applied in the self-attention
sub-layer. This technique ensures that when determining the output at a certain position,
the model can only consider the previous positions, not the subsequent ones. This is
further enforced by shifting the output embeddings by one position, safeguarding the
model’s autoregressive property, where each step’s prediction is contingent upon the
preceding steps only(Vaswani et al. (2017a)). Similar to Encoder-Decoder RNNs the
encoder creates a representation of the input data by encoding all the information and
global dependencies. Figure 5 displays the original architecture used in the paper.

Figure 6: The transformer architecture used in the original paper (Vaswani et al. (2017a)

2.5.3 Positional encoding

The transformer has no spatial information about the input data as in RNNs (in which
the input data is passed sequentially). Consequently, the authors suggest adding posi-
tional encoding to the input embeddings. There exist several techniques such as absolute
encodings, relative encodings, or LSTM-based encodings (Rosendahl et al. (2019)). For
the transformer model, absolute encodings based on sine and cosine functions of dif-
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ference frequencies are used. The encodings have the same dimension as the input
embedding layer, such that the two can be added. For a given position in the input
sequence pos and dimension index i the encodings are computed as:

PE(pos,2i) = sin(pos/100002i/dembedding)

PE(pos,2i+1) = cos(pos/100002i/dembedding)

For even dimension indices the sin is used and for uneven dimension the cos is used.
The term 100002i/dembedding controls the frequency of both functions. This ensures that
each dimension of the positional encoding corresponds to a sinusoid with a different
wavelength, ranging from very short to very long lengths. The authors hypothesized
that these encodings would allow the model to learn the relative positions of the input
data which is highly important for computing attention scores (Vaswani et al. (2017c)),
which turned out to be true. In Figure 6 the summation of input and output embeddings
and positional encodings can be seen inside the model architecture of the transformer
before the attention block.

2.5.4 Self-attention in transformers

As highlighted in the preceding discussions, the key innovation of the transformer was
to rely on attention mechanisms only. Hence, they proposed a new way of computing
attention scores. They describe their process as mapping a key and a set of key-value
pairs to an output. The keys, queries, values, and outputs are all vectors, which are
concatenated n times to a matrix, where n is the length of the input sequence. They
are typically derived by applying a feedforward layer to the input embeddings with an
individual weight matrix for each vector. The output is computed as a weighted sum of
the values. The weights are computed by a similarity function, like the dot-product, of
the query and the corresponding key (Vaswani et al. (2017d)). The authors name their
attention mechanisms ’Scaled Dot-Product Attention’(Vaswani et al. (2017d)). The keys
K and queries Q are of dimension dk and values V are of dimension dv. Beginning with
a dot product of queries and keys and dividing the result by

√
dk, applying a softmax

(equation 9) to compute the attention scores S and multiplying with the value vectors
(equation 10) to receive the final weighted matrix A, the process can be formally written
as:

S(Q,K) = softmax(
QKT

√
dk

) (9)

A(Q,K, V ) = S(Q,K)V (10)

(Vaswani et al. (2017d)). Refer to Figure 7 for a visualization of the process. It is worth
highlighting that this attention computation, computes the attention of input data to
itself. Precisely, if the input sequence has length n the attention score matrix S is
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of shape n × n. By looking at the attention score matrix of the so-called self-attention
mechanism, one can derive how each input data point attends to all the other input data
points. There does also exist ”encoder-decoder-attention” when queries come from the
previous decoder layer and keys and values come from the output of the encoder(Vaswani
et al. (2017d)). However, the focus of this work lies on encoder models, for which self-
attention is the only attention used. The encoder-decoder attention is well suited for
sequence-to-sequence tasks, where the decoder computes attention scores for the output
data and relates it to the encoder attention output.

Qn× dk Kn× dk Vn× dv

Matmul (9)n× n

1√
dk

(9)
n× n

Softmax (9)n× n attention scores S

Matmul (10)n× dv

final output A

Figure 7: Visualization of the attention mechanism. Assuming that the input sequence is of
length n. The key, query, and value vector dimensions are dk, dk and dv. The shape
of each matrix was placed next to each node. The corresponding equation number
was added inside the node.

In the case of stacked attention blocks as in the transformer architecture presented the
input does not come from the input or output embeddings but rather from the previous
attention block output.

2.5.5 Multi Head Attention

The presented self-attention computes one attention score matrix S for dmodel - dimen-
sional keys, queries and values (in this case dv = dk, and we term it dmodel).

The authors however also proposed a technique called ’multi-head attention”, in which
keys, queries, and values are projected h-times with different, learned linear projections
to dk, dk and dv. The attention is then computed on each of these projections allow-
ing for parallel computation for each dv-dimensional attention-’head’. The heads are
concatenated and projected again, leading to the final value.
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The key objective is that the model can jointly attend to information from different
representation subspaces (by linearly projecting the ’whole’ key, queries, and values to
lower dimensional spaces). The authors of the paper suggest h = 8 different attention
heads, for which they use dk = dv = dmodel/h = 64 Vaswani et al. (2017d).

This derivation is based on their chosen model dimension dmodel of 512. For given
query Q ∈ Rn×dmodel , key K ∈ Rn×dmodel , value V ∈ Rn×dmodel and weight matrices
Wi

Q ∈ Rdmodel×dk , Wi
K ∈ Rdmodel×dk and Wi

V ∈ Rdmodel×dv and WO ∈ Rhdv×dmodel ,
the process can be described formally as:

headi = H(Q,K, V, i) = A(QWi
Q,KWi

K, VWi
V) (11)

B(Q,K, V ) = Concatcol(H(Q,K, V, 1),H(Q,K, V, 2), . . . ,H(Q,K, V, h)) (12)

and thus

B(Q,K, V ) = Concatcol(head1, head2, . . . , headh)W
O

where Concatcol is defined as the column-wise concatenation of k matrices M ∈ Ra×b

Concatcol : Ra×b × Ra×b × . . .Ra×b︸ ︷︷ ︸
k-times

→ Ra×kb

and as it will be used later Concatrow is the row-wise concatenation of k-matrices M ∈
Ra×b

Concatrow : Ra×b × Ra×b × . . .Ra×b︸ ︷︷ ︸
k-times

→ Rka×b

However, it is worth mentioning that the concatenation of the heads might be executed
slightly different in practice. Since modern GPUs are optimized for tensor operations,
especially tensor multiplication, B can be computed as a three-dimensional tensor
product (neglecting batch dimension) instead of explicitly concatenating each head.
So the adjusted Q, K and V are of shape n × h × dmodel

h instead of shape n × dmodel.
As we can see, the model dimension is split into two dimension, leading to the three
dimensional tensor.
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Qn× dmodel Kn× dmodel Vn× dmodel

qh

. . .

q2

q1

kh

. . .

k2

k1

vh

. . .

v2

v1

headh

. . .

head2

head1

n× dv

n× dk n× dk n× dv

Concatn× hdv

Linear Projectionn× dmodel

Figure 8: Visualization of the multihead-attention mechanism. Assuming that the input se-
quence is of length n. The key, query, and value vector dimensions are of dmodel.
The shape of each matrix was placed next to each node. The following usually ap-
plies hdv = dmodel. Each qi, ki, vi is the result of the matrix multiplication with
the corresponding weight matrix with Q, K, and V and input to the corresponding
headi.

One of the key features of multihead-attention next to allowing the model to attend
to different information representations is the ability to fully parallelize the multihead-
attention computation over all heads. This is inherently different from modeling in
RNN-like models, where is no possibility for parallelizing because the data is processed
sequentially. By making use of this feature, very complex models can be trained much
faster and more efficiently than any other sequential model. Refer to Figure 8 for a
visualization of the process.

2.5.6 Attention Block

the transformer architecture is based on several attention blocks which all use scaled-
dotproduct self-attention to understand sequential data. Even though already touched
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on in the introductory section, the following section will elaborate on the inner workings
of the encoder attention block and how the attention mechanism is used in conjunction
with already existing structures to form the final block. Please note that for the following
description the process is described for a batch size b = 1. Hence, all the shapes are
squeezed ignoring the batch dimension.

The block gets fed an input embedding E ∈ Rn×dmodel , where n is the sequence length.
The embedding is linearly projected onto three subspaces to result in the well-known
query Q ∈ Rn×dk , key K ∈ Rn×dk , and value V ∈ Rn×dv matrices by multiplying E
with the corresponding projection matrices Wproj

Q ∈ Rdmodel×dk , Wproj
K ∈ Rdmodel×dk and

Wproj
V ∈ Rdmodel×dv . Q, K, and V are used as input for the multihead-attention layer

with h heads (Equation 13). A residual connection is applied around the multihead-
attention output Amultihead ∈ Rn×dmodel followed by a layer normalization L (Equation
14). The resulting normalized Anorm

multihead is passed to a feedforward layer F to result in a
matrix Z ∈ Rn×dmodel (Equation 15). Again, a residual connection is used followed by a
layer normalization. This leads to the final output Y ∈ Rn×dmodel of the attention block
(Equation 16). The process can be depicted formally as:

Amultihead = B(Wproj
Q E,Wproj

K E,Wproj
V E) (13)

Anorm
multihead = L(Amultihead + E) (14)

Z = F(Anorm
multihead) (15)

Y = L(Z +Anorm
multihead) (16)

Refer to Figure 6 to get a visual understanding of the encoder attention block (the
encoder block is located in the left subnetwork of the transformer in the figure). The
authors of the original paper stack six of these attention blocks (Vaswani et al. (2017d)),
where the output of one block is the input for the next block, resulting in an encoded
representation of the input sequence. This can then be either used for the decoder of
the transformer or for several tasks, e.g. classification.

2.5.7 Comparison to attention in RNNs

This mechanism works similarly to the attention found in Encoder-Decoder RNNs. In
both methods attention is computed and used as weights for the following weighted
sum of input information. Even though attention is calculated in different ways, the
core objective of attention in both models is to enable the model to focus on important
parts of encoded information. While the transformer uses encoder-self-attention and also
encoder-decoder-attention where output words attend to input words, attention in RNNs
is only encoder-decoder-attention. Consequently, the transformer is leveraging its ability
to learn relations from input words to themselves enabling a profound understanding of
language.
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2.5.8 Revolutionary impact

The advent of the Transformer architecture has not only revolutionized the field of NLP
but has also had a profound impact on the broader domain of AI. By decoupling the
processing of sequence data from sequential computation, the Transformer has enabled
models to learn and predict with unprecedented efficiency and accuracy. This shift has
facilitated the development of models that can process language in a way that is more
akin to human understanding, capturing nuances and relationships that were previously
out of reach for machine learning algorithms.

In NLP, the Transformer’s influence is evident in the surge of state-of-the-art models that
have followed its design principles. These models have set new benchmarks in a variety
of tasks, from machine translation to question answering, fundamentally changing the
landscape of what machines can achieve with language. Beyond NLP, the principles of
the Transformer are being adapted to tackle challenges in image recognition(Dosovitskiy
et al. (2020)), audio processing(Verma and Berger (2021)), and even in areas such as
genomics(Anwar Khan and Lee (2021)), where the ability to model complex, long-range
dependencies is crucial.

The Transformer’s self-attention mechanism has proven to be a versatile and powerful
tool, enabling models to focus on different parts of the input data as needed, without
the constraints imposed by the sequential nature of previous architectures. This has
opened up new possibilities for parallel computation, allowing for more efficient training
and inference, and paving the way for the development of even larger and more complex
models.

The next sections will delve into the various attention based models that have emerged.
These models build upon the Transformer’s foundation, each bringing its own innova-
tions. However, we start by introducing the concept of Language Models and transfer
learning, which is s key concept in how these models differ.

2.6 Language models

Language modeling involves training a model to understand the likelihood of sequences
of tokens, which are selected from a predetermined list of vocabulary. Given a sequence
of tokens 4 (x1, x2, ..., xn), the goal is to establish a probability distribution expressed as
P(x1, x2, ..., xn). Typically, the joint probability distribution is calculated by applying
the chain rule:

P (x) =
∏
t

P (xt|x<t)

4Words are usually encoded in some kind of token. Both will be often used interchangeably.
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In this formula, denotes all the tokens that precede the token currently being considered.
In easier terms, the Language Model (LM) is trained to predict a token at position t
given its preceding tokens at positions t − 1, t − 2, ...1 .While this method is widely
adopted, the field is rich with a variety of other techniques documented in scholarly
research (Alyafeai, AlShaibani, and Ahmad (2020)).

1. Unidirectional LMs
Unidirectional LMs take into account only the tokens that precede or follow the
current token within a context. For example, if we have the sequence (x1, x2,
x3, x4), and we aim to predict x3, we would consider (x1, x2) as the preceding
context and x4 as the subsequent context. In self-attention mechanisms, this is
often implemented using triangular matrices that ensure the attention weights are
zero for the current features, a technique typically referred to as autoregressive
encoding (Alyafeai, AlShaibani, and Ahmad (2020)). Refer to Figure 9 to get an
understanding of this approach. In the figure, one can see that the upper triangle
of this matrix is indeed set to zero.5

2. Bidirectional LMs
Bidirectional Language Models allow each token to consider all other to- kens in
its context. So, for predicting x3 in the sequence (x1, x2, x3, x4), x3 would be
influenced by (x1, x2, x4). However, this makes the task of predicting the next
word somewhat redundant since any token can look ahead to the next one. To
circumvent this issue, the literature often describes the use of masked language
models (Alyafeai, AlShaibani, and Ahmad (2020)).

3. Masked LMs
Masked Language Models are commonly employed in bidirectional LMs and
involve concealing some tokens within the context. The model’s objective is
then to infer these hidden tokens. These are indicated with a [MASK] label.
For instance, the sequence (x1, x2, [MASK], x4) would prompt the model to
deduce that the masked token is x3. This approach is often termed denoising
autoencoding.(Alyafeai, AlShaibani, and Ahmad (2020)). Refer to Figure 10 for a
visualization of this approach.

The main goal of the latest language model methods is to get around the need for lots
of labeled data. Before, training big models meant having people label a huge amount
of data for things like figuring out feelings in text or translating languages. This work
was expensive and also limited how well the models could understand language, because
they only learned from a limited set of examples.

The new language models change this by teaching themselves. They don’t need people
to label the data anymore. Unidirectional models look at the words that come before

5This is usually done by setting the upper triangle tokens of the dot-product of QKT to −∞ before
applying the softmax function of S in Equation 9.

30



and try to guess the next word. Bidirectional, i.e. Masked models, look at words before
and after a certain spot to guess a hidden word in that spot.

By learning this way, these models can use much more information to get better at
understanding language. They don’t have the same limits as before because they don’t
rely on human-labeled data. This means they can learn from just about any piece of
writing out there, which helps in generalizing and understanding human language.

a11 0 0 0 0

a21 a22 0 0 0

a31 a32 a33 0 0

a41 a42 a43 a44 0
a51 a52 a53 a54 a55




T1

T2

T3

T4
T5

T1 T2 T3 T4 T5

Figure 9: Attention matrix for a unidirectional language model with five tokens.

a11 a12 m a14 a15
a21 a22 m a24 a25
a31 m a33 a34 m
a41 a42 m m a45
a51 a52 a531 m a55




T1
T2
T3
T4
T5

T1 T2 T3 T4 T5

Figure 10: Bidirectional attention matrix with randomly masked tokens m. The masked to-
kens should be predicted by the model by taking all the non-mask tokens into
account. This is also why this approach is thought of bidirectional, since all the
tokens before and after the masked token are considered.

2.7 Transfer Learning

Historically, NLP models began with randomly set parameters, but the advent of Trans-
fer Learning has revolutionized this approach. By pretraining on a general task before
fine-tuning on a specific one, models now learn more quickly and require less data for
fine-tuning. While Transfer Learning was once predominantly linked with adapting
ImageNet-trained neural networks 6 to new vision tasks, recent progress in NLP has

6ImageNet is a large database of labelled images.
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made it feasible to apply this technique to language-based applications as well (Malte
and Ratadiya (2019a)).
This general task allows the model to grasp a broad understanding of human language.
An example pipeline would look like this: Start by pretraining the model on a generic
task like predicting the next token given the previous tokens using the WikiText7 Dataset
Malte and Ratadiya (2019a) and then finetuning the model on a classfication task. There
multiple other approaches, each using their speficic model-architecture and pretraining
technique. To summarize them and generate an overview the next section introduces
several models that have emerged after the original Transformer came out.

2.8 Emerged Models

Since the inception of the original transformer model, a large number of varieties of
the original transformer have emerged. Researchers have found that the components of
the Transformer’s architecture all serve different purposes and hence can be isolated.
Therefore, three types of models came into view.

2.8.1 Encoder models

Firstly, Encoder models focus on understanding input sequences as a whole and
creating encoded representations, which contain the relevant information and relations.
They can be assigned to the group of Bidirectional LMs. Referring to Figure 6,
encoder models make use of the left subnetwork of the Transformer only. One example
is the BERT model (Devlin et al. (2018)). As this work focuses on encoder mod-
els, the BERT model and its variants will be introduced detailed in the following sections.

2.8.2 Decoder models

Secondly, decoder models are used for generative tasks of predicting the next word in a
sentence. In contrast to encoder models, decoder models do not have access to all of the
input data at once. When given an input sequence all words, or tokens, after the current
word are masked. In easy terms, the model should not ’cheat’ in predicting the next
word by already seeing the correct word in the sequence that comes after the current
word. The decoder model belongs to the group of unidirectional LMs. Examples are the
GPT-family (which stands for Generative Pretrained Transformer) of OpenAI (Brown
et al. (2020)) or the Conditional Transformer Language Model (Keskar et al. (2019)).

7A large general-purpose dataset that consists of 28,595 preprocessed articles and 103 million words.
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2.8.3 Encoder-Decoder models

Lastly, Encoder-Decoder models are typical sequence-to-sequence models, where one
sequence needs to be transformed into another sequence. The Transformer is the clas-
sic example of this model. The Encoder creates a context representation of the input
sequence and the decoder uses the context and the output sequence to generate the
prediction. The Decoder uses self-attention and encoder-decoder-attention to establish
relations between input and output sequences. Self-attention blocks in the decoder in
this composite model of encoder and decoder are also unidirectional. Machine transla-
tion is a classic use-case for these models. Examples are the T5 (Raffel et al. (2019)) or
Google’s Neural Machine Translation System (Wu et al. (2016)).

2.9 Detailled overview of BERT-type encoder models

BERT, or Bidirectional Encoder Representations from Transformers, represents a
significant advancement in the field of natural language processing. Introduced
by Devlin et al. (2018), BERT addresses the challenge of integrating bidirectional
context in Transformer-based models. Traditional approaches to bidirectionality were
limited, as they allowed words to implicitly ’see themselves’ in a sequence, which is
not conducive to language modeling. Typically, models were constrained to either
left-to-right or right-to-left contexts, but a truly bidirectional model could provide a
more comprehensive understanding of the sequence context.

2.9.1 BERT architecture

BERT makes use of the Transformer’s architecture while ignoring the decoder part of
the model. To make BERT variable for a variety of down-stream tasks, the model is
able to represent both a single and a pair of sentences8 in one input token sequence9.
Distinct sentences are packed together by separating them with a separation token
([SEP]) and by adding a learned embedding S ∈ R(n+1)×dmodel 10 to every token
signaling the model whether the token belongs to sentence A or sentence B.

The authors of the BERT paper make use of WordPiece embeddings. WordPiece is a
word tokenization technique that helps by splitting up big or uncommon words into
smaller, more common pieces. This makes it easier for the model to deal with words it

8A sentence is termed as an ’arbitrary span of contiguous text, rather than an actual linguistic sentence’
(Devlin et al. (2018)).

9A sequence is termed as the input sequence which consists of token to BERT. It may be a single
sentence or two sentences combined (Devlin et al. (2018).)

10The row dimension is n+ 1 because the class token is added at the beginning.
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doesn’t see often and helps it understand and represent words in languages that have
lots of word endings or stick words together (Song et al. (2020)).

In the BERT model, a special classification token ([CLS]) C ∈ R1×dmodel gets added to
the input token sequence. The final hidden state of this token is used as the encoded
representation context vector of the whole input sequence for classification tasks.

Contrary to the original Transformer, BERT makes use of self-learned Position Em-
beddings P ∈ R(n+1)×dmodel . instead of predetermined, non-learned sinusoid positional
encodings. This allows BERT to optimize positional representations during the training
process, potentially capturing more nuanced positional relationships.

The final representation Ti for a given input token is constructed by summing the cor-
responding input token embedding Ei, segment embedding, and position embedding
(Devlin et al. (2018)). This can then be expressed as:

Ti = Ei + Si + Pi (17)

and for the whole sequence

T = Concatcol(C,E) + S + P (18)

where Concatcol(E,C), S, P ∈ R(n+1)×dmodel to allow for element-wise addition.

Refer to Figure 11 for a visual representation of BERT’s input processing.

[CLS] he likes play ##ing [SEP]my dog is cute [SEP]Input

E[CLS] Ehe Elikes Eplay E##ing E[SEP]Emy Edog Eis Ecute E[SEP]
Token
Embeddings

EA EB EB EB EB EBEA EA EA EA EA
Segment
Embeddings

E0 E6 E7 E8 E9 E10E1 E2 E3 E4 E5
Position
Embeddings

Figure 11: Visualization of BERT’s input representation, which combines token embeddings,
segmentation embeddings, and position embeddings.. (Devlin et al. (2018).

The authors of the BERT paper proposed two BERT models with different sizes for N
number of attention blocks, dmodel the dimension of the embeddings inside the model and
A the number of attention heads for multihead-attention inside each attention-block:

• BERTBASE(N = 12, dmodel = 768, A = 12, T otalParameters = 110M)

• BERTLARGE(N242, dmodel = 1024, A = 16, T otalParameters = 340M
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2.9.2 BERT pretraining

BERT innovates with its Masked Language Model (MLM) approach, where 15% of input
tokens are randomly masked. The model is then trained to predict these masked tokens,
enabling it to capture context from both directions of a sequence. The masking strategy
is threefold:

• 80% of the time, tokens are replaced with a [MASK] token.

• 10% of the time, tokens are replaced with a random token.

• The remaining 10% of the time, the original token is retained.

In addition to MLM, BERT employs a Next Sentence Prediction (NSP) task to improve
its understanding of sentence relationships. The model is trained to predict whether
a sentence logically follows another, which is essential for downstream tasks such as
question answering and natural language inference. The training set for NSP is composed
of a balanced mix of 50% positive examples, where sentences are actual neighbors, and
50% negative examples, where the second sentence is randomly selected (Devlin et al.
(2018)).

2.9.3 BERT fine-tuning

BERT’s architecture allows it to be fine-tuned with smaller datasets and less compu-
tational power than required for pretraining. This fine-tuning has led to significant
improvements over previous state-of-the-art results in a variety of NLP tasks, including
natural language inference, question answering, and semantic similarity. The fine-tuning
process adapts BERT to specific tasks, which can be categorized as follows:

• Single Sentence Classification Tasks: These involve adding layers to the [CLS]
token’s embedding and processing the input sequence with a preceding [CLS] token.

• Sentence Pair Classification Tasks: In these tasks, two sentences are separated by
a [SEP] token, and classification layers are added to the [CLS] token.

• Question Answering Tasks: BERT is adapted to predict the answers to questions
based on the context provided.

• Single Sentence Tagging Tasks: These tasks involve adding tagging information to
the output for tasks like named entity recognition.

Despite the slower convergence due to the MLM task, BERT demonstrates immediate
improvements in accuracy. For the NSP task, it achieves an accuracy rate between
97% and 98%, underscoring its capability to discern the relationship between two
sentences effectively (Malte and Ratadiya (2019b)). We will focus on the context vector
representation the [CLS] token generates in this work. The relation between fine-tuning
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and pretraining phase can be seen in Figure 12.

BERT BERT

E[CLS] E1  E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1  [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1  E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1  [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair 

SQuAD

Question Answer Pair

NERMNLI

Figure 12: BERT’s training involves two main stages: pretraining and fine-tuning. The core
model architecture remains consistent across both stages, with the exception of
the output layers. The model parameters obtained from pretraining are used as
starting points for various downstream tasks. In the fine-tuning stage, all of these
parameters are adjusted to better suit the specific task at hand. Special tokens,
such as [CLS] at the beginning of inputs and [SEP] to separate segments like
questions and answers, are used in the process (Devlin et al. (2018)).

2.9.4 BERT variants

The success of BERT has spawned a variety of adaptations and improvements, each
aiming to enhance the model’s performance or to tailor it to specific applications. These
variants build upon the original BERT architecture, often modifying the pretraining
tasks, model size, or input representations to achieve better results or more efficient
training. Some notable BERT variants include:

• RoBERTa (A Robustly Optimized BERT Pretraining Approach): This
variant modifies the BERT pretraining procedure, including training the model
longer, with more data, and on longer sequences, which leads to improved perfor-
mance on downstream tasks (Liu et al. (2019)).

• DistilBERT (Distilled BERT): DistilBERT is a smaller, faster, cheaper, and
lighter version of BERT. It retains 97% of BERT’s performance on downstream
tasks while being 40% smaller and 60% faster (Sanh et al. (2019)).

• ALBERT (A Lite BERT):ALBERT restructures BERT’s architecture to reduce
the model’s memory consumption and increase its training speed. It achieves this
by factorizing the embedding layer and sharing parameters across layers (Lan et al.
(2019)).
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2.10 Summary

This section has provided a comprehensive exploration of the evolution of language mod-
eling techniques. We began with the foundational RNNs, progressed through the ad-
vancements brought by Encoder-Decoder RNNs, and culminated with the game-changing
development of Transformers and their subsequent variants. Particular emphasis was
placed on the BERT model, which stands as a pivotal encoder-based language model
that has significantly influenced the field.

Moving forward, we will shift our attention to the limitations inherent in traditional
attention mechanisms and explore potential strategies to address these challenges. The
remainder of this thesis will be dedicated exclusively to examining and enhancing encoder
models.
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3 Limits of Attention

3.1 Quadratic complexity

The computation of the attention weights S involves the scaled dot-product of the query
matrix Q and the transpose of the key matrix K resulting in a matrix of scores with
quadratic complexity with respect to the input sequence length n. Specifically, the
operation QKT requires n2 time and memory, as it computes a score for each pair of
tokens in the sequence (Tay et al. (2020)). As illustrated in Figures 10 and 11, this results
in a full n×nmatrix representing the attention scores before the softmax normalization.
The complexity of this operation is given by:

Score Matrix =
QKT

√
dk

= O(n2) (19)

After the score matrix is computed, the softmax function is applied to obtain the
attention weights S. The softmax is an element-wise operation that scales with the size
of the score matrix but does not increase the quadratic complexity:

S = softmax

(
QKT

√
dk

)
= O(n2) (20)

The final attention output A is then obtained by multiplying the attention weights S
with the value matrix V . This multiplication is also quadratic in complexity, but since
it follows the computation of S, the overall complexity remains the same. Thus:

A = SV = O(n2) (21)

The self-attention mechanism’s quadratic cost affects both the training and inference
speeds of Transformers. Generally, memory restrictions are more applicable to training
(because of gradient updates and the need to store each activation of a forward pass in
memory) and less to inference (no gradient updates). While it is a significant factor,
it only accounts for part of the total computational expense. The feedforward layers
within each attention block also require substantial computation, approximately half of
the total compute time (Tay et al. (2020)). Although the complexity of feedforwards is
linear in relation to the sequence length, it remains a considerable part of the overall
computational cost. However, in this work, we will focus on the bottleneck of the
attention mechanism solely.
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3.2 Consequences of the quadratic complexity of self-attention

The introduction of the Transformer architecture marked a significant leap forward in
the ability to develop complex models efficiently, thanks to its groundbreaking approach
to fully parallelize attention computations. This innovation has paved the way for a new
generation of models that are both more sophisticated and larger than their predecessors.
The key to the Transformer’s success lies in its ability to process inputs in parallel, a
stark contrast to the sequential nature of older models like RNNs, which struggled with
long sequences due to vanishing and exploding gradients.

Despite these advancements, the drive to enhance the Transformer’s capabilities has
encountered a critical bottleneck: the architecture’s computational demands increase
quadratically with the length of the input sequence. This quadratic complexity presents
a significant challenge, not because of an inherent limitation in handling long sequences
per se, but due to the exponential growth in required computational resources. As a
result, the practical application of Transformers is heavily influenced by the constraints
of available computational power.

In the case of models such as BERT, which typically limit input sequences to 512 tokens
(Devlin et al. (2018)), the challenge of computational efficiency becomes acutely relevant.
The self-attention mechanism, a core feature of the Transformer that enables its high
efficiency in parallel processing, is also the source of its computational intensity. This
creates a pivotal tension between the potential to process longer sequences and the
realistic limitations imposed by computational resources.

The consequence of this bottleneck is significant, extending beyond the mere ability
to process longer texts. It highlights a fundamental limitation in the scalability of
current AI models under computational constraints, making them less adaptable to tasks
that demand extensive data processing. This limitation also acts as a driving force for
innovation, pushing researchers to explore alternative language models and techniques
that can circumvent these computational challenges.

In response to this, the subsequent section shifts focus towards examining solutions that
aim to address the computational bottleneck of Transformers. The goal is to propose a
model that integrates various strategies to alleviate the computational demands, thereby
enhancing the efficiency of processing within the constraints of available resources. This
exploration is essential for pushing the boundaries of what is possible with AI models,
ensuring they can continue to evolve and tackle increasingly complex tasks without being
hindered by computational limitations.
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4 Addressing Quadratic Complexity
Constraints in Attention Mechanism

4.1 Introduction

In the following section, we will explore innovative strategies designed to address the
challenges posed by the quadratic complexity inherent in attention mechanisms. Our
discussion will be structured around three primary paradigms, each targeting a distinct
aspect of these limitations.

Firstly, we will delve into methods aimed at optimizing the attention matrix itself.
These techniques primarily focus on reducing the size of the attention matrix, conse-
quently diminishing the computational resources required. This is essentially achieved
by ’sparsifying’ the attention matrix. Among the notable approaches in this domain
are:

• The LinFormer, which leverages the low-rank property of attention matrices to
approximate them, thus reducing complexity to a linear scale (Wang et al. (2020)).

• BigBird, introducing a randomly sparsified attention matrix(Zaheer et al. (2020)).

• BlockBert, which sparsifies the attention matrix by confining attention scores to a
direct local neighborhood, effectively reducing computational overhead (Qiu et al.
(2019)).

The second area of focus will be on cutting-edge model architectures designed to facilitate
memory-efficient computation while maintaining the overall depth and intricacy of the
network. In this context, we will examine the use of ’reversible’ blocks.

Lastly, we will introduce a novel training approach for Masked Language Models (LMs)
termed ’Electra’. This method enables the accelerated training of large models, yielding
comparable results in a shorter timeframe. Although Electra does not directly lessen
memory requirements, it significantly reduces the costs associated with training by short-
ening the duration needed to train a Masked LM.

40



4.2 Sparsifying the attention matrix

To overcome the limitations imposed by the quadratic complexity of standard attention
mechanisms, it is essential to sparsify the attention matrix. This entails to design a
scheme whereby each token xi for i ∈ 0, 1, . . . , n attends selectively to a subset of tokens
indexed by Si ⊆ {0, 1, . . . , n}. Such an approach ensures that not every token is attended
to by every other, thereby reducing the computational burden of each attention opera-
tion. This reduction introduces a critical trade-off: the smaller the size of Si, the lower
the computational cost, yet with the increasing risk of omitting interactions crucial for
capturing the intended semantics of the input.
The selection of the subset Si need not be static but can vary depending on the token
at position i. Our objective is to find a set of positions Si for each token such that the
resulting sparsified attention matrix closely approximates the full attention matrix in
the best possible way.

4.2.1 Sliding window Attention

One way to sparsify the attention matrix is to use sliding windows as fixed pattern
around the current token xi. For a fixed window size w each token attends to w

2 tokens
on each side (Beltagy, Peters, and Cohan (2020)). The set Si, representing the indices
of tokens within the window of xi, can be formalized as:

Si = {i−
w

2
, . . . , i, . . . , i+

w

2
} (22)

The authors of the paper which introduced the concept explained: ”Using multiple
stacked layers of such windowed attention results in a large receptive field, where top
layers have access to all input locations and have the capacity to build representations
that incorporate information across the entire input, similar to CNNs”(Beltagy, Peters,
and Cohan (2020)). This can also be seen as a giving the model an inductive bias where
human assumptions are coded into the model’s structure and architecture. By doing
this the model is forced to learn in a specific way, here by limiting its attention to a local
neighborhood. The window size w may also vary across different layers and as such is a
tunable hyperparameter.
We adjust the current computation of the attention matrix S with:

Sw
i (qi, kSi) = softmax(

qikSi
T

√
dk

) (23)

for each token xi. To compute the final attention output Aw we need to consider the
local context of the attention matrix Si

w and therefore start by calculating Ai
w as:

Ai
w(qi, kSi , vSi) = Si

w(qi, kSi)vSi (24)
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To finalize the attention output, each token-wise attention output Ai
w is concatenated

row-wise:

Aw(Q,K) = Concatrow(A
w
0 (q0, kS0 , vS0), . . . ,A

w
n (qn, kSn , vSn)) (25)

where qi ∈ R1×dmodel is the query vector for token xi and kSi ∈ Rw×dmodel is a subset of
the key matrix K that corresponds to the window Si containing only the keys that token
xi is allowed to attend to and finally, vSi ∈ Rw×dmodel the subset of the value matrix V .
The sliding-window attention matrix is of shape n × w instead of n × n and the final
attention output is again of shape n× dmodel

Since each token attends to w other tokens the complexity of the sliding window attention
mechanism can formally described as:

Sw = O(nw) (26)

and thus scales linearly with the input sequence length n. To ease the understanding in
the following section, a setH is defined which contains all the additional hyperparameters
that have to be considered using the novel approaches. Currently H can be described
as:

H = {W}

where W contains the window sizes wl for each layer l. Refer to Figure 13 to understand
sliding window attention visually.

Figure 13: Sliding window attention. Each tokenxi only attends to its local neighborhood. In
this case w = 6 (Beltagy, Peters, and Cohan (2020)).

4.2.2 Dilated sliding window attention

Similar to dilated (or atrous) CNNs (Chen et al. (2016)) where some values are skipped
with a fixed rate d when computing the convolution, the concept of dilation can also
be applied to the attention mechanism. The sliding-window approach of the previous
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Figure 14: Dilated sliding window attention with w = 6 and d = 2. There is a gap of d−1 = 1
between each token in the local neighborhood (Beltagy, Peters, and Cohan (2020)).

section is constrained on short distances since the model only is able to attend to tokens
inside the window size w making it impossible to capture long-range dependencies. To
overcome this limitation dilated sliding window attention was introduces. Instead of
using a sliding window of size w the window is extended to size dw but with gaps of size
d − 1 between tokens (Beltagy, Peters, and Cohan (2020)). This means each token xi
still attends to a total number of w tokens but the the Set Si changes to

Si = {i−
dw

2
, i− dw

2
+ d, . . . , i, . . . i+

dw

2
− d, i+

dw

2
} (27)

The range to which tokens xi increases from
w
2 in both direction to dw

2 in both directions
giving the model a larger context to work with and learn from. This making it suitable
for very long input sequences without a significant increase in computational costs.

Since each token still only attends to w other tokens the complexity of the dilated sliding
window attention mechanism can formally be described also as:

Sw = O(nw) (28)

The computation for Aw and everything else stays the same. The only thing that is
changed is the set Si. Consequently, H is adjusted to:

H = {W,D}

where D contains the dilation rates dl for each layer l. Refer to Figure 14 for a visualized
explanation.

4.2.3 Global attention connection

For masked LMs the model uses the context around the masked token to predict it. In
BERT-style models an additional [CLS]-token is added at the beginning which represents
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the whole input sequence for further tasks like classification or clustering. The goal is to
encode the the information of the input sequence inside the [CLS]-token embedding of
the last attention block. When using (dilated) sliding window attention, the attention
computed is not flexible enough to learn ’good’ task-specific representations. Therefore
global attention is added. Global attention in this context refers to the concept of adding
full attention computations on few pre-selected input locations. This is a symmetric
operation: A token with global attention attends to all tokens across the sequence and
all tokens in the sequence attend to it (Beltagy, Peters, and Cohan (2020)).

In our case, the windowed and dilated attention are not flexible enough to learn task-
specific representations. Accordingly, we add “global attention” on few pre-selected
input locations. Importantly, we make this attention operation symmetric: that is, a
token with a global attention attends to all tokens across the sequence, and all tokens
in the sequence attend to it (Beltagy, Peters, and Cohan (2020)). The set L contains
all the positions of token with global attention. That is for all i ∈ G, the following is
stated:

Si = S

which means that the local attention subset equals the full attention set. Additionally,
since this is a symmetric operation (Beltagy, Peters, and Cohan (2020)) each element of
G has to be added to each Si stating:

Si = Si ∪ L

The size of L, i.e. the number of global attention tokens is small relative to the indepen-
dent tokens n the complexity of the combined local and global attention computation is
still O(nw) (Beltagy, Peters, and Cohan (2020)).
The hyperparameter set H is adjusted accordingly:

H = {W,D,L}

Figure 15 provides a visualized explanation of the global attention.
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Figure 15: Global attention combined with sliding-window attention for w = 6, L =
{0, 1, 5, 15} and d = 1. The first row is the corresponding [CLS]-token which uses
global attention to capture the information of the whole input sequence (Beltagy,
Peters, and Cohan (2020))

.

4.2.4 Locality Sensitive Hashing

One of the downsides of restricting attention to a fixed size of tokens around the attention
token is that important long range tokens which may capture more relevant information
than the tokens in the direct neighborhood will be thrown away, hence leading to a sig-
nificant loss of information. The Locality Sensitive Hashing (LSH) attention mechanism
proposed by Kitaev et al. is another way to sparsify the attention matrix, however,
instead of limiting attention to the direct neighborhood, it tries to compute attention
only between somewhat ”similar” tokens (Kitaev, Kaiser, and Levskaya (2020)).

Since tokens are represented by high-dimensional embedding vectors inside the model,
the goal is to formulate an algorithm that finds the l nearest neighbors in high-
dimensional spaces. This is achieved by using a hashing function h which assigns each
vector x to a hash h(x). This function is ’locality-sensitive,’ meaning vectors that are
close to each other are likely to have the same hash, while distant ones do not (Kitaev,
Kaiser, and Levskaya (2020)).

Let R ∈ Rdmodel× b
2 be a random matrix and where b is the number of hashes. The

hashing function h can then be described as:

h(x) = argmax(Concatrow(xR,−xR)) (29)

Adoni et al. demonstrated that this is a practical and valid LSH schema, which is not
only easy to implement but also effective for individual vectors and batches of vectors
(Andoni et al. (2015)).

We can refer to equation 23 to understand how attention is computed in a sparsified
attention matrix. The only difference is that our set Si changes. Instead of containing
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the neighboring position token indices, it now consists of the tokens within the hashed
bucket. However, the authors also omit for LSH-Attention the scaling factor

√
dmodel

and set Q = K. Equation 23 then changes for LSH-Attention to:

Sw
i (qi, kSi) = softmax(qikSi

T) (30)

for each token xi while the rest of the equations 23-25 remain consistent. The set Si can
now be depicted as:

Si = {j : h(qi) = h(kj)} (31)

Meaning the set Si consists of all positions j such that the hash value h(qi) equals the
hash value of h(kj).

The process involves organizing queries by grouping them into buckets based on their
hash values and arranging them in order within each bucket. To address the issue where
a bucket might have a disproportionate number of queries compared to keys, the authors
recommend normalizing each query vector qj by its magnitude, setting kj =

qj
||qj || . This

adjustment ensures that the hash values for the queries qj and the keys kj match, leading
to an equal distribution of queries and keys in each bucket.

Once sorted, these query-key pairs are divided into segments, each containing mpairs.
In cases where a bucket has more than m pairs, a unique attending rule applies: a query
in one segment can refer to all keys in the same bucket from the previous segment, but
it cannot refer to keys outside its current segment. This rule, however, doesn’t apply to
other queries in the same bucket; they are not allowed to refer to a key that’s outside
their current segment. This method is illustrated in Figure 16.

Figure 16: LSH attention algorithm: The sequence is hashed into buckets, then sorted accord-
ing to their bucket number and position in the bucket. Following this the sequence
is chunked into parts of length m. As shown queries outside a chunk can only
attend backward.
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The authors state that their attention mechanism has a complexity of

Sw = O(n log n) (32)

which can be more efficient than the local attention of the previous section depending
on the sequence length n and the chosen window size w.

Finally, our hyperparameter set H can then be stated as:

H = {b,m}

Our set consists of the number of hashes b where in general more hashes mean the
probability that similar tokens are grouped while the computational complexity increases
and the chunk length m which stands for the size of the parts the sequence is chunked
into after sorting it according to their buckets and positions.

4.3 Reversible residual layers

4.3.1 Backpropagation summary

The hardware limits because of quadratic complex are especially relevant when training
the model. That is, during training every output of each layer, also called activation,
needs to be stored in memory. This is a direct consequence of how backpropagation and
the chain-rule works. During the forward-pass each computation is stored as a node in
a computational graph G. Let v0, v1, v2, . . . , vK be the nodes of G where vk is the cost
function C. Each node vi can be described as a function fi of its parent nodes. Looking
at equations 13 to 16 this process can be seen quite well. Each computation is a function
of the previous computation. In backpropagation the total derivative denoted with a
bar symbol

v̄i =
δC

δvi

is computed. To determine v̄i the backprogation algorithm iterates over the nodes in
reverse order and applies the following rule:

v̄i =
∑

j∈Child(i)

(
δfi
δvi

)v̄j (33)

which is a recursive procedure in v̄j and δfi
δvi

is the Jacobian matrix1. Child(i) denotes
the set of nodes that are directly influenced by vi. That is they are children of the node
vi in terms of the computational graph. The summation of all children accounts for
the contributions of all child nodes to the gradient of vi. Each term in the summation

1Jacobian matrix is a matrix of first order derivatives of a vector-valued function.
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represents one path from vi to the output. It captures how vi changes vj and how vj
changes C. This is the total derivative of C with respect to vi. Summing up, being
able to compute v̄i requires all outputs (or activations) of the children nodes to be saved
in memory (i.e. as nodes in the computational graph) such that they can be accessed
when applying equation 29. The larger the computational graph, the larger the memory
requirements.

4.3.2 Residual networks summary

Residual networks were already established in an earlier section. However, as they are
the underlying principle of the reversible residual network which is introduced in this
section, they will be explained more rigorously now. At the core of a residual network is
the idea of a residual block. Each block, be it an attention block (introduced in section
2.5.6), a convolutional block, or a multi-layer feedforward block, implements a specific
transformation. Let F be a residual block that maps an input x to an output y. A
residual connection can then be described as:

Z = F(x) + x (34)

where Z is the output of the residual block. Residual networks stack multiple residual
blocks where each block follows its own methodology by mapping an input x to an output
y. Residual connections help stabilize gradients and allow for better information flow.
This improves the training of very deep and complex models (He et al. (2015)).

4.3.3 Reversible layer

Residual blocks can contain multiple layers making them possibly very large. Large
models increase the size of the computational graph and therefore also the need for more
memory. When considering attention block this adds even more memory requirements
due to the quadratic complexity discussed earlier. To overcome this problem, reversible
residual layers were proposed. The core idea is to build a model that does not need to
store the activation of the layers apart from the last one in memory. To achieve this each
residual connection is adjusted to be invertible. Then each activation can be recomputed
when needed in equation 29. Such invertible residual connections are called reversible
blocks (Gomez et al. (2017)).
A reversible block expects two inputs x1, x2 and produces two outputs y1, y2 with the
following transformation:

y1 = x1 + F(x2)

y2 = x2 +G(y1)
(35)
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where F and G are residual blocks. The activations of the layers can be reconstructed
from the succeeding layer’s activations with the following (Gomez et al. (2017)):

x2 = y2 −G(y1)

x1 = y1 − F(x2)
(36)

By knowing the outputs y1 and y2 each input activation of the model can be easily
restored.
For this work attention and feedforward blocks are used as residual blocks. The trans-
former attention block consists of two residual connections: The first for the attention
output and the second for the feedforward layer.
As the reversible blocks expect two inputs x1, x2 and the block input is x, x has to be
partitioned channelwise, that is dimensionwise. Considering attention blocks, we can

say that x ∈ Rn×dmodel is split in x1 ∈ Rn×dmodel
2 and x2 ∈ Rn×dmodel

2 by halving the
dimension size.
To make full usage of reversible blocks, multiple of them are stacked and only the ac-
tivation of the last block is stored. In summary, reversible blocks allow to reconstruct
previous activations when needed while only saving the last activation in memory.

Figure 17: The forward pass of a reversible block (Gomez et al. (2017)). Based on equation
31.

Figure 18: The recomputation of the input activations a reversible block (Gomez et al. (2017)).
Based on equation 32.

4.3.4 Backward pass for reversible layers

To get an understanding of the backpropagation procedure for reversible layers it is
helpful to rewrite forward:

z1 = x1 + F(x2) (37)
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y2 = x2 +G(z1) (38)

y1 = z1 (39)

and backward, i.e. reverse equations (Gomez et al. (2017)):

z1 = y1 (40)

x2 = y2 −G(z1) (41)

x1 = z1 − F(x2) (42)

Note that y1 and z1 represent different nodes of the computational graph. z1 is an
intermediate state which simplifies the gradient computation inside the block. For a
better understanding the computational graph for a reversible block is displayed in
Figure 18.

x1

x2

F

z1 y1

G

y2

Figure 19: The computational graph of a reversible block.

Using the computational graph to determine the total derivative x̄1 for example we have
to follow every path from x1 to the leaves of the graphs. By doing this we can determine
which outputs are influenced by x1 and hence for which a partial derivative has to be
computed. By adding all partial derivatives of the paths, the total derivative x̄1 is
calculated. In summary the computation of the total derivative using a graph structure
to track each calculation follows two main rules:

R1 Multiply the derivatives along one path

R2 Add the derivatives of different paths

Keeping this in mind, one can derive an the gradient of the reversible block.
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z̄1 = ȳ1
∂y1
∂z1

+ (
∂G

∂z1
)T ȳ2 = ȳ1 + (

∂G

∂z1
)T ȳ2 (43)

x̄2 = ȳ2 + (
∂F

∂x2
)T z̄1 (44)

x̄1 = (
∂z1
∂x1

)T z̄1 = z̄1 (45)

W̄F = (
∂F

∂WF
)T z̄1 (46)

W̄G = (
∂G

∂WG
)T ȳ2 (47)

where ȳ1 and ȳ2 (the total derivatives with respect to the loss C) are already determined
and used following the chain rule.
To understand the process fully, the equations are explained in detail.

• Equation (39): To compute the total derivative of z1, we identify all nodes in the
computational graph influenced by z1. From Figure 18, it’s clear that y1 and y2
(through G) are affected by z1. Therefore, we sum the contributions from these
two paths according to R2. Each path’s contribution to the derivative is calculated
using the chain rule. The partial derivatives with respect to y1 and y2 are then
scaled by their respective total derivatives with respect to the loss C using R1.
This is done to determine the derivative of the loss C. Taking equation (35) into
account, the derivative of y1 w.r.t. z1 is 1 leading to the simplified second equation.

• Equation (40): x2 influences y2 and z1 through F. Also y1 is affected by x2 through
z1. However, we already captured this dependency with z̄1. Hence, we only scale
with z̄1 instead of with the full dependency to y1 to make use of already computed
properties. Again R2 is used to add the paths and R1 to determine the derivative
on the path.

• Equation (41): x1 affects y1 and y2 through z1. Since z1 is computed by adding x1
and F(x2) in equation (33), z1 is influenced by x1 directly and hence the derivative
of z1 w.r.t. to x1 is 1. In summary the total derivative of x1 equals the total
derivative of z1

• Equation (42): WF denote the parameter of the function F. Since the parameter
affect z1 through F and y1 and y2 through z1 the total derivative can be determined
by considering all the paths to z1 from F and scale afterwards with the total
derivative of z1 to account for the affect in y1 and y2 and their corresponding effect
on the loss C.

• Equation (43): WG denote the parameter of function G. The parameter influence
y2 through G. To determine the final derivative of C w.r.t. WG we scale with the
total derivative of y2.
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By utilizing computational graphs, we gain a significant advantage in visualizing and
conceptualizing the backpropagation process in neural networks, especially in reversible
layers. The computational graph not only illustrates the forward flow of computations
but also serves as a roadmap for the backward propagation of gradients.

In the context of reversible layers, focusing on subgraphs allows us to isolate specific
portions of the network for detailed analysis. This isolation simplifies the understanding
of gradient flows and their accumulation, particularly in complex networks with numer-
ous intertwined paths. The key benefit of this approach lies in its ability to reduce
the complexity of backpropagation to manageable, localized computations within these
subgraphs.

The chain rule, a fundamental principle in calculus, underpins the backpropagation pro-
cess. It enables the decomposition of derivative calculations into simpler, sequential
steps. By acknowledging that ȳ1 and ȳ2 store all gradient information of the loss C
with respect to succeeding blocks and parameters, we can effectively apply the chain
rule within these subgraphs. This approach means that, to compute the overall impact
on the loss C, we only need to multiply the local derivatives of y1 and y2 with respect
to internal block parameters by ȳ1 or ȳ2. Such a method allows for a granular yet com-
prehensive view of gradient computation, concentrating on individual subgraph nodes
while implicitly accounting for the broader network context.

This targeted focus on subgraphs is not just a theoretical convenience but a practical
necessity in deep learning. It streamlines the computational process, reduces the po-
tential for errors in derivative calculations, and enhances our ability to understand and
optimize complex neural networks.

4.3.5 Backpropagation in reversible layers

The previous section introduced the computation of the gradient in reversible layers. To
summarize the processes, a simple algorithm is derived to highlight how a individual
layer should implement the backpropagation and reversible steps to correctly propagate
the gradient information along the network. This is especially useful for implementing
the process in code later.

Steps 2 to 4 in Algorithm 1 recompute the needed input and intermediate activations
based on equations (36) to (38). Steps 5 to 9 determine the relevant gradients rooted in
equations (39) to (43). Finally, the gradients w.r.t. to the parameter of the functions F
and G are returned in addition to the recomputed inputs.
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Algorithm 1 Algorithm for backpropagation in reversible layers

1: function BackpropReversibleBlock(y1, y2, ȳ1, ȳ2)
2: z1 ← y1
3: x2 ← y2 −G(z1)
4: x1 ← z1 − F(x2)
5: z̄1 ← ȳ1 + ( ∂G∂z1 )

T ȳ2

6: x̄2 = ȳ2 + ( ∂F
∂x2

)T z̄1

7: x̄1 ← ( ∂z1∂x1
)T z̄1 = z̄1

8: W̄F ← ( ∂F
∂WF

)T z̄1

9: W̄G ← ( ∂G
∂WG

)T ȳ2
10: return (x1, x2,W̄F,W̄G)
11: end function

4.4 Electra Pretraining

4.4.1 Review of current Pretraining Techniques for Masked LMs

As detailed in Section 2.6, the leading method for pretraining Masked LMs adheres
to the BERT pretraining protocol. This involves taking a sentence represented by a
sequence of n tokens (x1, x2, x3, ...xn) and randomly substituting certain tokens, usually
15%, with a unique identifier. For instance, if x3 is replaced, the sequence becomes
(x1, x2,mask, . . . , xn). The model’s task is then to accurately predict the masked token
using the context provided by the surrounding tokens. This process is highly automated,
eliminating the requirement for labeled data during the pretraining phase.

4.4.2 Generative and Discriminative models

Deep learning focuses on developing complex and layered models that encapsulate various
data types, essentially representing their probability distribution (Bengio (2009)). These
models typically fall into two categories: Generative and Discriminative models.

A generative model, when provided with input x and labels y, learns the joint probability
distribution p(x, y). From this, it calculates p(y|x) and selects the most probable label
y. In essence, generative models explicitly determine the distribution for each label yi.

On the other hand, discriminative models directly learn the posterior probability p(y|x),
bypassing the need to understand the joint distribution p(x, y). Consequently, discrimi-
native models establish a straightforward mapping between inputs and outputs (Ng and
Jordan (2001)). Refer to Figure 19 for a visualization of the two approachés.

The current trend in pretraining is predominantly a generative learning approach, where
the model tries to learn the distribution of each masked token over all potential tokens.
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Figure 20: Distinguishing between generative and discrimnative models. As we can see dis-
criminative models from a decision boundary and learn the mapping between input
and labels directly, while generative models learn the distribution on which a clas-
sification can be done afterwards (Google Developers (2022)).

4.4.3 Discriminative Pretraining with Electra

Considering traditional Masked LMs, the models do not only face substantial computa-
tional costs due to the costly attention computation, but also because the model only
learns from a limited subset of tokens per example. This subset consists of the masked
tokens which usually account for 15% of the per example tokens. This leads to a rather
imbalanced training, since in order to let the model learn good representation of each
token a high amount of examples is required. Consequently, the computational costs
can quickly escalate (Clark et al. (2020)).

As an alternative Clark et al propose a new training paradigm, the replaced token de-
tection pretraining. Instead of predicting the correct token over all possible tokens, the
model should learn to distinguish real input tokens from ”plausible but synthetically
generated replacements”(Clark et al. (2020)). This is achieved by using two BERT-like
models, a generative and a discriminative one which both consist of an encoder which
map an input sequence x = (x1, x2, x3 . . . , xn) to sequence of contextualized vector rep-
resentation h(x) = (h(x1), h(x2), h(x3) . . . , h(xn)) (Clark et al. (2020)) like the BERT
Encoder we have already seen .

Given an input sequence x consisting of tokens (x1, x2, x3 . . . , xn) where tokens were
randomly masked, the generative model, also called generator solely, is, again, trained
on predicting the masked token. Following the masked tokens in the input sequence
are replaced with the generator predictions. Let the masked input sequence be
(x1, x2,mask, . . . , xn), where for simplicity only the token x3 was masked. Let y be the
prediction of the generator for the masked token x3. By replacing the masked token
with t, the resulting sequence Spost can be written as (x1, x2, y3, . . . , xn), where xpost
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can be seen as the with the generator outputs corrupted input sequence x (Clark et al.
(2020)).

The discriminative model, or discriminator solely, is then trained to determine which
tokens were corrupted given the input sequence xpost. Consequently, sticking to our
example, the discriminator should predict that token y3 is a replacement, while all the
others are not. The whole network is then pretrained as a discriminator in contrast to
traditional generative Masked LM pretraining, where the model is trained as agenerator
to predict the original identies of the corrupted tokens. The authors introduce two main
advantages of using the discriminative pretraining approach (Clark et al. (2020)):

• The replacement of masked tokens with artificial generated tokens from the gener-
ator fixes the mismatch that the model sees the masked tokens during pretraining
but not during finetuning tasks, because the tokens are only masked for pretraining
purposes (Clark et al. (2020)).

• The model learns from all input tokens instead of just the masked token subset per
example. This makes it much more computationally efficient (Clark et al. (2020)).

After pretraining, only the discriminator is used for further fineuning tasks.

The generator and discriminator usually follow the same model architecture, for example
the BERT architecture. However, the model size of the generator is downsampled to a
fraction of the discriminator’s size. The downsampling is usually done for the models
hidden dimension, number of attention heads and number of attention blocks. Exper-
iments have shown that using generators 1/2 or 1/4 of the discriminator’s size have
yielded the best results. The authors speculate that a too strong generator may offer a
too challenging task for the discriminator, hindering it from learning effectively. This
approach was named ’Electra’ which stands for ”Efficiently Learning an Encoder that
Classifies Token Replacements Accurately” (Clark et al. (2020)).

In summary Electra frames the pretraining paradigm as a discriminative problem rather
than a generative one, in order to allow for fewer computational ressources, less training
time and possibly better token representations.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[MASK]
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Figure 21: Replaced token detection in Electra. Masked tokens are replaced with generator
predictions. The discriminator learns to recognize generated tokens. After pre-
traing only the discriminator is used (Clark et al. (2020)).
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4.4.4 Training algorithm for Electra

Training Electra involves training the generator and the discriminator. Training the gen-
erator is crucial since the discriminator should be challenged. The token replacements
of the generator should somewhat make sense. If the generator solely generates out of
context words without any connection to the input sequence, the discriminator will not
face any problems determining them. However, by also optimizing the generator, the
corrupted tokens become more and more challenging to detect and the discriminator
has to learn even better word representations. This interaction between generator and
discriminator may already be familiar to some readers in General Adversarial Networks
(GANs) (Goodfellow et al. (2014)). However, the generator is not trained in an adver-
sarial manner but with maximum likelihood given the difficulty of applying GANs to
textual data (Caccia et al. (2018)).

Algorithm 2 Training algorithm for Electra

Input: Input sequence x = (x1, x2, . . . , xn) of length n, masked token probability
p, generator G, discriminator D, loss scaling λ

1: mi ∼ unif{1, n} with probability p for i = 1, . . . , n
2: m← {m1,m2, ....,ml} such that l = floor(pn)
3: xmasked ← (x1, x2,mask, . . . , xn)
4: ygen ← G(xmasked)
5: xpost ← (x1, x2, y

gen
3 , . . . , xn)

6: ydisc ← D(xpost)
7: Lgen ←

∑
i∈m
− log(pygeni |xmasked)

8: Ldisc ←
∑n

i=1−1(x
post
i = xi) log(y

disc
i )− 1(xposti ̸= xi) log(1− ydisci )

9: Lx ← Lgen + λLdisc
10: min

θG,θD

∑
x∈X
Lx

Given an input sequence x, we draw a mask token mi from a uniform distribution with
a probability p. All masked tokens mi are combined into a set m of masked tokens.
The set m has a size of l = floor(pn) where floor rounds pn to the next smallest
integer. (step 1 and step 2). We then replace the tokens mi of x with the unique masked
token identifier, for simplicity we name it mask (step 3). The generator G generates
predictions ygen for all the masked tokens in xmasked. The masked token at position i
is then replaced with the generation ygeni for all masked tokens to receive the corrupted
input sequence xpost(step 4 and 5). This sequence is then fed into the discriminator D to
predict which tokens in xpost were replaced by using the discriminator output ydisc (step
6). Afterwards the generator loss Lgen is computed as plain binary cross entropy. The
discriminator loss Ldisc is calculated as multiclass cross entropy (step 7 and 8). We use
a weighted sum of the both with weighting factor λ to obtain our overall per example
loss Lx. Finally, we sum over all input sequences x ∈ X to receive the final loss L. This
loss is then minimized with respect to the parameters θG of the generator and θD of the
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discriminator.

4.5 Summary

The last sections have covered a variety of approaches to overcome the limits of the
attention mechanisms. Starting with adjusted attention mechanisms to create sparsi-
fied attention matrices, continuing with reversible residual layers that reduce memory
consumption during training, and finishing with a new pretraining paradigm. The next
section will adopt these methods in trying to build a small-scale domain-specific LM
that can be trained on moderate GPU sizes.
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5 Pretraining the model on financial text
data

5.1 Introduction

In the following section, the focus will be set to constructing an LM-Encoder model
that is pretrained on financial text data under the constraint of limited computational
resources. Consequently, the goal is to use the approaches of the previous section,
construct different models, and pretrain them on financial text data. During and after
the training the models will be evaluated to obtain insights into which model architecture
performed best for this domain-specific data and the given computational limits. The
repository can be found in the appendix.

Pytorch (Paszke et al. (2019)) and the transformer library by Hugging Face (Wolf et
al. (2020)) was used to implement and train the models. The implementation of the
reversible blocks and dilated attention was inspired by the Meta research team and the
xFormers repository (Lefaudeux et al. (2022)). The code for the Electra framework was
highly inspired by Mercier and its Electra repository (MERCIER (2021)).

5.2 Tokenization and Embeddings

For tokenization, we employ the BytePair Encoding (BPE) technique, similar to that
used in the classic RoBERTa model (Liu et al. (2019)). To ensure optimal tokenization
for our domain-specific dataset, we train a separate tokenizer on the financial text data.
This approach ensures enhanced tokenization coverage, crucial for accurately processing
the unique terminology and syntax inherent in financial texts.

5.3 Proposed Models

5.3.1 Reversible and Non-Reversible Dilated BERT

In our proposed model, following the classic BERT architecture, we opt to learn word
embeddings during training. This strategy allows the model to develop domain-specific
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word embeddings, potentially capturing nuanced information more relevant to our fi-
nancial dataset than generic, pre-trained embeddings.

To streamline the learning of contextual representations, we integrate pre-determined
positional encodings, specifically sinusoidal encodings as detailed in section 2.5.3 of the
original Transformer paper. Our model adheres to BERT’s pretraining approach, in-
cluding the use of segment embeddings S and a class token C (as outlined in section
2.9.1 and Figure 11), which are added to the token embeddings. The final representation
of a token Ti and the entire sequence T are formally expressed as:

Ti = Ei
pre + Si + PEi (48)

T = Concatcol(C,E
pre) + S + PE (49)

Our first proposed encoder model features dilated attention blocks, with the first to-
ken of the sequence designated as a global token. Each block can be configured as a
reversible attention block, with the option to make all or none of the blocks reversible.
The memory efficiency of reversible blocks is most pronounced when they are used in
sequence, as this setup requires storing only the activations of the last layer. Breaking
this chain necessitates additional memory for storing the activations of the new chain,
thus incrementally increasing memory usage and complexity. Therefore, the reversibility
can either be activated or deactivated for all blocks.

Embedded within the Electra pretraining framework, this model functions both as a gen-
erator and discriminator, given its nature as an encoder network. The hyperparameter
set H1 for this model includes:

H1 = {W,D, r,N seq, Nheads, N blocks, dmodel, Gsize}

where W is the window size for local attention per layer, D is the dilation rate per
layer, r ∈ 0, 1 indicates the reversibility of blocks, N seq is the sequence length, Nheads

the number of attention heads, N blocks the number of attention blocks, dmodel the em-
bedding dimension, and Gsize ∈ ]0, 1] the relative size of the generator compared to the
discriminator.

5.3.2 Reformer

The Reformer, introduced in Kitaev, Kaiser, and Levskaya (2020), is a language model
that incorporates LSH attention and reversible layers. Like our previous model, the
Reformer employs a similar word embedding layer. However, it diverges in its use of
axial position embeddings (Dufter, Schmitt, and Schütze (2021)) instead of sinusoidal
ones.

The Reformer is also utilized as an encoder within the Electra framework. Its hyperpa-
rameter set H2 is defined as:

H2 = {b,m,N seq, Nheads, N blocks, dmodel, Gsize}
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Here, b represents the number of hashes, and m the chunk length, with the other pa-
rameters being consistent with those in the previous model.

5.3.3 Plain BERT

Additionally, a plain BERT model is used as Electra encoder. There are two main
reasons to use BERT here.

• BERT is an established encoder model which has shown very good results in the
past

• Employing BERT in a setting with limited computational resources allows us to
evaluate whether the modifications in other model architectures significantly im-
pact resource usage during training. This comparison will be particularly insightful
in terms of memory consumption, training efficiency, and accuracy under our spe-
cific constraints.

Since all the models above inherit their basic architecture from BERT, the hyperparam-
eter set of BERT H3 is as simple as:

H2 = {N seq, Nheads, N blocks, dmodel, Gsize}

This set includes fewer hyperparameters compared to the enhanced models. However,
it’s important to note that the standard BERT model doesn’t specifically address mem-
ory limitations. Our primary method for managing these constraints within BERT is to
adjust the overall size of the model. Subsequent sections of this thesis will demonstrate
that these adjustments can be quite effective, especially in scenarios where sequence
lengths aren’t excessively long and where the benefits of sparsifying attention mecha-
nisms and reversible layers aren’t as pronounced.

5.4 Domain specific data

The primary objective of this training is to evaluate the performance of a model that
has been pretrained on domain-specific data, taking into account certain computational
limitations. To achieve this, we utilize a dataset of financial texts provided by the source
identified as Aman Khan (n.d.). This dataset comprises annual reports filed with the
SEC EDGAR system by U.S. public companies from 1993 to 2020. Each report in
the dataset is divided into 20 distinct sections, and further, each section is broken down
into individual sentences. Altogether, the dataset encompasses approximately 67 million
sentences, which serves as the foundation for training the model.
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5.5 Computational ressources

For this training, we employ an Nvidia Titan V with 12 GB of VRAM, a choice that
brings into sharp focus the challenges and constraints posed by limited memory resources.
This hardware selection is particularly pertinent given our domain-specific approach
to training models on financial texts. In the realm of specialized datasets, such as
financial reports, the efficient utilization of computational resources becomes paramount,
especially when operating under memory constraints.

Each model in this study is trained for an identical number of steps, utilizing roughly
12 GB of memory throughout the training process. This consistent methodology is
crucial for two reasons. First, it allows for an equitable comparison of training efficiency
and basic performance metrics across different models, a comparison that is especially
vital in the context of domain-specific data. Second, it aids in a detailed evaluation of
each model’s effectiveness in masked token prediction, an aspect central to understanding
model performance in handling specialized vocabularies and concepts unique to financial
texts.

A key emphasis of this study is not merely on the individual performance of each model
but also on their comparative performance, particularly in the context of domain-specific
training. This comparative analysis is invaluable as it illuminates the trade-offs and de-
sign decisions each model architecture makes, especially under the constraints of limited
computational resources. By focusing on domain-specific data, we gain a deeper insight
into how each model navigates the intricate balance between resource constraints and
the specialized nature of the dataset, thereby offering a richer understanding of model
efficiency and applicability in specific domains like finance.

5.6 Training setup

5.6.1 General Configuration

In the following sections, we will detail the parameter choices for the models and the
general training goal. Since our models are embedded in the Electra approach, we will
follow the Electra pretraining paradigm. 15% of the tokens are masked. The generator
should predict these, replace the masked tokens with the predictions and the discrimi-
nator will predict whether a token was replaced. Both the generator and discriminator
loss will be monitored since the interaction of both is needed for a working training
process. However, the main goal is to minimize the discriminator loss as the pretrained
discriminator is the one that will be used for further downstream tasks. Therefore, a
loss weighting factor of λ = 50 is chosen.

A consistent batch size of 64 was employed across all models, primarily because it rep-
resents the maximum capacity for the largest model, BERT, on our GPU. Adopting the
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same batch size for each model facilitates direct comparisons. The dataset, composed of
individual sentences, led to the selection of a sequence length N seq = 128. This length
is sufficient as all sentences are shorter than 128 tokens, ensuring minimal end-padding
and efficient memory utilization. Each model incorporates N blocks = 12 attention blocks
and, unless specified otherwise, Nheads = 4 attention heads, a configuration mirroring
the small Electra model as proposed by Clark et al. (2020). The generator size was set
at Gsize = 0.25. The model-specific parameters are:

• Reversible Dilated BERT: This variant was configured with a uniform window
size W = 64, . . . , 64 across all twelve layers, accompanied by a consistent dilation
rate D = 2, . . . , 2. To optimize memory efficiency, each attention block was made
reversible (denoted by r = 1). The model’s dimension, set to dmodel = 256, aligns
with the small Electra model’s architecture.

• Reformer: For this model, a dimension of dmodel = 512 was chosen. Despite
this increased dimension, the Reformer’s efficient design ensures that its memory
consumption remains comparable to other models. This higher dimension could po-
tentially enhance learning capabilities without incurring additional memory costs.
Additionally, the number of hashes was set to h = 4, and the chunk length to
m = 64.

• BERT: The BERT model adheres to the general parameter settings, without any
unique modifications, unlike the other models.

5.7 Pretraining results

5.7.1 Relative comparison of ressources

We start by giving a quick overview of the ressources each model needed during training.
Note that these specifics are based on the training process, i.e. the model and its
gradient.

Model MB memory during training Seconds per iteration

BERT 8856 1.04

Reformer 8156 1.53

Reversible Dilated BERT 8450 1.14

Table 1: Comparison of model ressources during training

While the memory gains for the Reformer are notable considering a higher model dimen-
sion dmodel, the overall observed memory enhancements fall short of expectations. This
discrepancy likely arises because the benefits of the sparsified attention matrix become
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more pronounced at longer sequence lengths. Similarly, the memory efficiency improve-
ments attributed to the reversible layer are more significant in larger models. Given that
this thesis aims to evaluate small-scale models for their suitability in handling domain-
specific data, it is crucial to note that despite variations in model architecture among
the three examined models, the incremental benefits for small-scale models appear to be
minimal.

5.7.2 Relative comparison of pretraining performance

The baseline BERT model outperformed others during the pretraining phase, with both
the discriminator and generator exhibiting concurrent learning and reduction in loss.
This simultaneous decrease indicates an effective learning process for both components.
As depicted in Figure 22, the training process is characterized by loss spikes occurring at
comparable intervals, yet the general trend is a decrease in loss over time. Moreover, the
training and validation loss display parallel trends, implying that the model is learning
in a robust manner.

(a) Validation and training
overall loss

(b) Discriminator training loss

(c) Generator training loss

Figure 22: Overall loss, train discriminator and train generator loss

The Reformer exhibited notably slow learning, as illustrated in Figure 23, with minimal
decreases in loss per thousand steps. Adjustments to hyperparameters yielded no signif-
icant improvements in the model’s learning trajectory. The generator’s loss decreased
until approximately the 10,000th step, after which it began to increase and failed to
stabilize in subsequent steps. On the other hand, the discriminator’s loss showed a
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consistent decrease, plateauing around a value of 0.22. When compared to the BERT
model’s performance, as discussed in the previous section, it is evident that by the
70,000th step, both the generator and discriminator in the BERT model had achieved
lower loss values. This is especially surprising given the fact that the model dimension
dmodel = 512 is notably larger for the Reformer model than for BERT.

Despite the Reformer’s lower memory consumption, it required nearly 50% more time for
each iteration compared to the BERT model, as detailed in Table 1. Given the minimal
memory savings for this particular sequence length, the Reformer’s extended training
duration and its sluggish, if any, convergence highlight that the modifications made to
its architecture come at the expense of model performance in this specific application
context.

(a) Validation and training
overall loss

(b) Discriminator training loss

(c) Generator training loss

Figure 23: Overall loss, train discriminator and train generator loss

The reversible dilated BERT model demonstrated even poorer performance compared
to the Reformer, with both validation and training losses decreasing simultaneously but
not significantly. A critical issue was the discriminator’s inability to converge, rendering
the pretrained model ineffective for any downstream tasks. Additionally, the generator’s
loss plateaued at approximately 6.5 from step 15,000 to 80,000, indicating a significant
stagnation in learning despite the model processing a large number of examples, given
its batch size of 64. This suggests that the model had ample opportunity to learn from
the data presented.

In comparison, the BERT model has proven that effective learning is indeed possible,
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showcasing better performance metrics. The reversible dilated BERT model consumes
slightly more memory than the Reformer but less than the traditional BERT model,
positioning it in the middle in terms of resource usage. Its training time also falls between
that of the two models. These observations imply that the modifications to the attention
mechanism, intended to enhance efficiency, fail to adequately capture the nuances of
language for the given sequence length and in this particular domain. This indicates a
potential misalignment between the architectural adjustments and the requirements for
effective language understanding in this context.

(a) Validation and training
overall loss

(b) Discriminator training loss

(c) Generator training loss

Figure 24: Overall loss, train discriminator and train generator loss

In conclusion, it is evident that the BERT model outperforms the competing models
in terms of performance. The slight increase in memory usage by BERT is, within
the context of this thesis—focusing on small-scale models with limited sequence
lengths—insignificant. However, this factor may become more pertinent in scenarios
involving larger models and extended sequences. Moreover, BERT’s reduced training
duration facilitates faster convergence, thereby optimizing resource utilization.

In Table 2 a quick overview of each model’s performance is given after 70,000 steps. After
this amount of steps, the three models were evaluated and the best was chosen for further
pretraining and downstream tasks. It is clear, that the BERT model outperformed the
other two models. Hence, for the following downstream tasks, the discriminator of the
BERT model is used after being trained on 210,000 steps with a batch size of 64.
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Model Validation Loss Train loss

BERT 8.99 9.51

Reformer 17.22 18.14

Reversible Dilated BERT 25.60 24.58

Table 2: Comparison of model performance during pretraining after 70,000 steps
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6 Finetuning on financial data

6.1 Financial sentiment analysis

The pretrained model was finetuned on a financial sentiment task. The dataset by Malo
et al. (2014) was used for that. It consists of several sentences retrieved from financial
news. Each of them is labeled with a sentiment class: neutral, positive, negative. An
example sentence would be: ”Biohit already services many current Genesis customers
and the customer base is expected to expand as a result of this agreement .” with the
label ”positive”.

To train the model, the embedding of the [CLS] token in the discriminator was used. A
linear layer predicting the logits for each one of three classes was set on top of the [CLS]
embedding of the discriminator.

The model underwent fine-tuning for approximately 12,000 steps, achieving a validation
accuracy of 84%. A noteworthy observation is that while the training loss stabilized,
the validation loss began to diverge from the 500th step onward, indicating potential
overfitting. Despite this, there was a simultaneous increase in validation accuracy.

This phenomenon suggests that although the model is accurately identifying the correct
classes, it is doing so with diminishing confidence. This scenario exemplifies a common
trade-off in the dynamics between loss—specifically, cross-entropy—and accuracy. Cross-
entropy gauges the model’s confidence in its predictions, whereas accuracy measures the
proportion of correctly predicted classes. Given the high accuracy rates and considering
the dataset’s balance, we can infer that the fine-tuned model is predominantly making
correct classifications, albeit with varying degrees of certainty.

(a) Downstream validation loss (b) Downstream validation
accuracy

Figure 25: Financial sentiment finetuning results
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6.2 Financial news topic classification

Additionally, the pretrained model was also finetuned to predict the topic of a financial
tweet. The ”zeroshot/twitter-financial-news-topics” (zeroshot (n.d.)) was used for this
task. Possible topics are:

1. Analyst Update

2. Fed, Central Banks

3. Company, Product News

4. Treasuries, Corporate Debt

5. Dividend

6. Earnings

7. Energy, Oil

8. Financials

9. Currencies

10. General News, Opinion

11. Gold, Metals, Materials

12. IPO

13. Legal, Regulation

14. M&A, Investments

15. Macro

16. Markets

17. Politics

18. Personnel Change

19. Stock Commentary

20. Stock Movement

An example sentence would be: ”Netflix and its peers are set for a ‘return to growth,’
analysts say, giving one stock 120% upside” with the label ”Analyst Update”. The
classifier architecture was the same as for the finetuning of financial sentiments, but
instead of three classes this model outputs 20.

The training process was identical to the previous model for downstream tasks. The
[CLS] token was extracted and used for classification.
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The finetuned model achieved a validation accuracy of about 87% after being trained for
about 500,000 steps. The same phenomenon, even though a bit less severe, of diverging
validation loss and increasing validation loss could be observed here, suggesting better,
but less confident, predictions.

(a) Downstream validation loss (b) Downstream validation
accuracy

Figure 26: Financial topic finetuning results

6.3 Finetuning conlusion

Leveraging a domain-specific pre-trained model significantly facilitated the training pro-
cess. As evidenced by Figures 25 and 26, the validation accuracy reached its peak early
in the fine-tuning phase, underscoring the robust foundation provided by the pre-trained
BERT discriminator. An advantageous aspect of adopting the Electra strategy is that
fine-tuning the discriminator requires minimal resources. Unlike other larger pre-trained
models, the discriminator constitutes only a part of the comprehensive pretraining frame-
work. Yet, its sophisticated bidirectional context embeddings are readily employable by
downstream models. This efficiency indicates that the Electra framework supports the
use of smaller models (in our case, dmodel = 256) during both pretraining and fine-tuning
phases, with the latter not necessitating the generator. This approach not only stream-
lines the fine-tuning process but also highlights the Electra model’s capacity for efficient
adaptation and learning within a resource-constrained environment.
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7 Conclusion

This work embarked on an exploratory journey through the intricacies of optimizing
transformer models for the nuanced field of financial NLP. Through a detailed examina-
tion of tokenization, embeddings, recurrent neural network challenges, and the revolu-
tionary impact of attention mechanisms, this work has laid a comprehensive foundation
for understanding the current landscape of NLP technologies. Particularly, it delved
into the advancements brought about by transformer models, highlighting their superior
capability in handling language-based tasks when compared to traditional RNNs.

The core of this thesis was dedicated to investigating the constraints imposed by hard-
ware limitations on the pretraining and finetuning of transformer models, specifically
within the financial NLP domain. By experimenting with various model architectures,
including the Reformer, Plain BERT, and a custom reversible dilated BERT, this study
sought to uncover efficient strategies for model optimization under resource constraints.
The findings reveal that while these adjusted architectures offer theoretical benefits, par-
ticularly in scenarios of longer sequence lengths, their practical advantages are somewhat
limited in small-scale environments with short sequence lengths and stringent resource
limitations for this specific domain.

An intriguing aspect of this research was the successful application of the Electra pre-
training approach to the BERT model, which demonstrated considerable efficiency in
finetuning with satisfactory outcomes. This suggests that the Electra model, with its
discriminator-focused training method, provides a viable path for enhancing model per-
formance in domain-specific tasks without necessitating substantial computational re-
sources.

Furthermore, the exploration of domain-specific pretraining on financial text data un-
derscored the importance of tailored approaches to model development in achieving high
accuracy and relevance in specialized fields. The relative comparison of resources and
pretraining performance offered critical insights into the trade-offs between computa-
tional demands and model efficacy.

In conclusion, this work not only advances our understanding of the potential and lim-
itations of small-scale transformer models in the context of financial NLP but also
contributes valuable methodologies and insights for optimizing these models within
the constraints of available hardware resources. The comparative analysis of different
transformer architectures, alongside the practical application of the Electra pretraining
method, provides a solid foundation for future research aimed at refining and enhancing
the efficiency of NLP models in domain-specific and ressource-limited applications. As
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the field of NLP continues to evolve, the findings and approaches detailed in this work
will undoubtedly serve as a cornerstone for subsequent investigations into the optimiza-
tion of transformer models for specialized tasks
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A Repository of the implementation

The repository for this thesis can be found here: https://github.com/Coluding/
Assessing-Efficiency-in-Domain-Specific-Transformer-Models.git
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