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This thesis explores the optimization of dynamic Location Allocation (LA) prob-
lems with a focus on Replicated State Machines (RSM) in large-scale global net-
works. RSM systems, which ensure fault tolerance through the replication of state
machines across multiple data centers, face significant latency challenges due to
global client distribution and the need for dynamic reconfiguration of active data
centers. Traditional heuristic approaches are limited in their scalability and ability
to adapt to rapidly changing environments.
To address these challenges, this research proposes a hybrid optimization frame-
work that leverages Graph Neural Networks (GNNs) and Deep Reinforcement
Learning (DRL). GNNs are employed to capture the complex graph structure of
RSM systems, representing data centers and client interactions. DRL is utilized
to train the model in an online learning environment, enabling it to dynamically
adjust data center configurations to minimize latency and operational costs.
The thesis first provides a comprehensive review of LA problems and their clas-
sification, followed by an exploration of classical and modern heuristic solution
methods, including the theoretical foundation of DRL and GNNs. A novel appli-
cation of the Dynamic Stochastic Facility Location Problem (DSFLP) is developed
to frame the RSM optimization challenge within an RL context. The proposed
solution is evaluated in a simulated environment, demonstrating its effectiveness
in reducing latency and improving system performance compared to traditional
methods.
This work contributes to the field of operations research by integrating advanced
machine learning techniques with classical optimization problems, offering a scal-
able and adaptive solution for real-world applications in global network manage-
ment.
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1. Introduction

Location-Allocation (LA) problems are critical in many domains, including lo-
gistics, telecommunications, and urban planning. These problems involve deter-
mining the optimal placement of facilities and the allocation of resources to meet
demand most efficiently. Over the years, various methods have been developed
to solve LA problems, ranging from classical optimization techniques to advanced
heuristic methods. However, as the complexity and scale of these problems have
increased, traditional approaches have often fallen short in providing timely and
accurate solutions.
In recent years, the advent of advanced computational techniques, particularly in
the fields of machine learning and artificial intelligence, has opened new avenues
for tackling complex optimization problems like LA. Reinforcement Learning (RL),
with its ability to learn optimal policies through interaction with an environment,
has shown promise in addressing dynamic and uncertain LA problems. Further-
more, Graph Neural Networks (GNNs), designed to work with data represented
as graphs, offer a powerful tool for modeling the relationships between facilities,
locations, and customers in LA problems.
This thesis explores the application of RL and GNNs to solve dynamic and stochas-
tic LA problems. The focus is on extending traditional LA problem frameworks,
such as the p-median and Facility Location Problems (FLP), to handle dynamic
and uncertain environments through RL and GNN-based approaches. By integrat-
ing these modern techniques, the thesis aims to address the challenges of scalability
and adaptability that are inherent in large-scale, real-world LA problems.
The research specifically investigates the potential of RL and GNNs to optimize the
location and allocation of replicated state machines (RSM) in a distributed com-
puting environment. This practical problem exemplifies a dynamic LA problem,
where the objective is to minimize latency by strategically placing data centers in
response to shifting client demands. The study not only contributes to the theoret-
ical understanding of RL and GNN applications in LA problems but also provides
practical insights and solutions for optimizing complex systems in real-time.
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2. Allocation Location Problems:
Literature Review

This section provides a comprehensive overview of the existing literature on Location-
Allocation (LA) problems. It begins with a formal definition of the problem. The
discussion then shifts to dynamic LA problems, which are the primary focus of this
thesis, followed by a classification schema proposed by various authors. Then, the
complexity of LA problems will be shown followed by a presentation of existing
heuristic solution approaches. Finally, prevalent methods that use Reinforcement
Learning (RL) and/or Graph Neural Networks (GNN) will be examined in the
literature.

2.1. Problem Introduction

2.1.1. General Introduction

The LA problem involves the interplay between facilities, locations, and customers,
deriving from foundational location problems explored by Location Science. The
historical origins of Location Science trace back to the 17th century when Fermat
tackled the geometric challenge of minimizing the sum of distances between three
points in Euclidean space. However, contemporary Location Science primarily fo-
cuses on setups where the goal is to identify the optimal placement for one or more
facilities to serve a set of demand points. The definition of ”optimal” varies with
the problem’s context and objectives, such as minimizing distance costs or maxi-
mizing customer coverage (Laporte, Nickel, and Gama (2015)). This development
was highly influenced by the single warehouse problem elaborated by Alfred Weber
in the early 20th century (Weber (1922)) as pointed out by Turkoglu and Genevois
(2020). It involves the determination of the minimum transport cost location in a
continuous two-dimensional space in which the market and the sites of localized
resources are given (Tellier (1972)).
Central to the LA problem is the task of determining the optimal placement and if
needed also the number of facilities in available locations to minimize transporta-
tion costs to customers while fulfilling their demands (Azarmand and Neishabouri
(2009a)). This problem extends beyond basic location problems by integrating the
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allocation of customer demand, distinguishing it from simpler location scenarios.
Some researchers equate LA problems with the p-median problem, where the ob-
jective is to position ’p’ facilities so as to minimize the demand-weighted average
distance to the nearest facility for demand nodes (Allahbakhsh et al. (2019), M. S.
Daskin and Maass (2015)). The p-median problem thus shares considerable simi-
larities with the classic Weber problem (Kazakovtsev (2013)).
However, other experts consider LA problems to encompass a wider range of chal-
lenges, including subfields such as, p-median problems, both capacitated and un-
capacitated facility location problems (FLPs), p-center problems, and covering
problems (M. S. Daskin and Maass (2015), Turkoglu and Genevois (2020)). Given
this diversity, it is challenging to arrive at a concise definition of LA problems.
The focus of this thesis will be on the p-median and specifically on dynamic ex-
tensions of it. This focus is chosen because the p-median framework aligns closely
with the methodologies discussed in this study and provides a practical approach
to addressing LA challenges. For this thesis, the p-median framework stands for
the general goals of the p-median problem formulation, i.e. minimizing some cost
measure while serving demand points, instead of the concrete problem. It serves
as the foundation for other extensions that all build up on the general goals of the
p-median problem and can be developed out of it. By treating the p-median prob-
lem and extensions as synonymous with LA problems, the thesis aims to explore
this specific aspect thoroughly, examining both its theoretical underpinnings and
practical applications in optimizing facility locations. The following sections will
give a mathematical formulation for the p-median problem and its derived exten-
sions. Starting with the static p-median problem, a more relaxed and dynamic
version of it will be developed in the following.

2.1.2. P-median Problem

As elucidated by C. ReVelle, Eiselt, and M. Daskin (2008), given potential facility
locations J = {1, 2, ...} and demand points I = {1, 2, ...} the p-median problem
involves choosing locations for p facilities based on given demands or weights wi at
nodes, distances dij between nodes and potential facility sites, and the number of
facilities p. The goal is to optimize facility locations to minimize costs or maximize
service effectiveness.

The decisions in the model are twofold:

1. Location Decision: Determine the optimal locations for the p facilities.

2. Allocation Decision: Assign each demand node to a specific facility, en-
suring efficient service distribution.



The decision variables are:

• xj = 1 if a facility is established at site j, and 0 otherwise.

• yij = 1 if demand node i is assigned to facility at site j, and 0 otherwise.

The mathematical formulation follows the approach of C. S. ReVelle and Swain
(1970) and can be written as:

minimize
∑
j∈J

∑
i∈I

widijyij (1.1)

subject to
∑
j∈J

yij = 1 ∀i ∈ I, (1.2)

yij − xj ≤ 0 ∀i ∈ I,∀j ∈ J, (1.3)∑
j∈J

xj = p, (1.4)

xj ∈ {0, 1} ∀j ∈ J, (1.5)

yij ∈ {0, 1} ∀i ∈ I,∀j ∈ J. (1.6)

The constraints can be explained as:

• Objective Function (1.1): Minimize the total weighted distance between
facilities and assigned demand points.

• Constraint (1.2): Ensure that each demand node i is assigned to exactly
one facility j, ensuring comprehensive service coverage.

• Constraint (1.3): Guarantee that assignments can only be made to oper-
ational facilities, integrating facility status directly into the decision-making
process.

• Constraint (1.4): Require that exactly p facilities are operational, aligning
with strategic planning objectives.

• Constraints (1.5) and (1.6): Define xj and yij as binary variables, where
xj = 1 if a facility is established at location j and 0 otherwise, and yij = 1 if
demand point i is served by facility j and 0 otherwise, reinforcing the discrete
nature of facility location and service assignments.

In the literature, it is noted that Constraint (1.6) could be relaxed to non-negativity
constraints. If an optimal solution results in a demand node being assigned to
multiple facilities, it indicates equidistance. If the binary nature of the assignment



variables is required, a node can be fully assigned to any one of the facilities arbi-
trarily (C. ReVelle, Eiselt, and M. Daskin (2008)).
It is important to highlight that there are other, more specialized, formulations of
the problem (Barbato et al. (2023), Blanco (2019), Avella, Sassano, and Vasil’ev
(2007)). One relevant extension is presented in the following section.

2.1.3. Facility Location Problem

The Facility Location Problem (FLP) extends the traditional p-median problem by
relaxing the assumption of having a fixed number of facilities. While the p-median
problem primarily focuses on determining the optimal locations for a fixed number
of facilities, the FLP also addresses the allocation of demand to these facilities.
Again, in the FLP, two key decisions must be made:

1. Location Decisions: Determining the optimal sites for and number of
facilities.

2. Allocation Decisions: Assigning user demand to the established facilities.

Each decision incurs costs: fixed costs fj for setting up facilities and variable as-
signment costs for serving the demand from these facilities like in the p-median
problem. Each facility j has a maximum capacity denoted by qj. The objective
is to minimize the total costs associated with both establishing facilities and allo-
cating demand (Fernandez and Landete (2015)).

The mathematical formulation of the FLP is closely related to that of the p-median
problem, and it is expressed as follows:

minimize
∑
j∈J

∑
i∈I

widijyij +
∑
j∈J

fjxj (2.1)

subject to
∑
j∈J

yij = 1 ∀i ∈ I, (2.2)

yij − xj ≤ 0 ∀i ∈ I,∀j ∈ J, (2.3)∑
i∈I

ciyij ≤ qjxj ∀j ∈ J, (2.4)

xj ∈ {0, 1} ∀j ∈ J, (2.5)

yij ∈ {0, 1} ∀i ∈ I,∀j ∈ J. (2.6)

The constraints can be explained as:



• Objective Function (2.1): Minimize the total cost, which is the sum
of the assignment costs (

∑
j∈J
∑

i∈I widijyij) and the facility establishment
costs (

∑
j∈J fjxj).

• Constraint (2.2): Ensure that each demand point i is assigned to exactly
one facility j.

• Constraint (2.3): Guarantee that assignments can only be made to oper-
ational facilities.

• Constraint (2.4): Ensure that the total demand assigned to a facility j
does not exceed its capacity qj.

• Constraints (2.5) and (2.6): Define xj and yij as binary variables, where
xj = 1 if a facility is established at location j and 0 otherwise, and yij = 1
if demand point i is served by facility j and 0 otherwise.

In essence, the FLP seeks to find the optimal balance between the costs of estab-
lishing facilities and the costs of allocating demand, thereby ensuring that all user
demands are met efficiently and cost-effectively (Fernandez and Landete (2015)).
In contrast to the p-median problem, one can see that constraint 1.4 is replaced
with 2.4 accentuating the allocation, i.e. the variable facility selection in the FLP.
If we opt to remove the constraint 2.4 we get a slightly modified version of the
FLP, which is the Uncapacitated FLP (UFLP). In the UFLP setup, each facility
does not have a capacity limit anymore.

2.1.4. Dynamic Deterministic Facility Location Problem

Both problems, the p-median and the FLP, cannot take into account dynamically
changing environments. Problems that need to be evaluated over multiple time
steps where in each time step the positions of facilities and clients changes require
more sophisticated problem formulations and solution methods. As explained by
An, Norouzi-Fard, and Svensson (2017) based on Eisenstat, Mathieu, and Scha-
banel (2014), the Dynamic Facility Location Problem tries to solve this downside.
They introduce a relaxation to the classic FLP by minimizing the aggregated
costs over a fixed time horizon of T time steps. Since the environment dynamics
are known for this approach, i.e. the new locations of clients and facilities, we
will refer to this problem as the Dynamic Deterministic Facility Location Problem



(DDFLP). The problem can be formally depicted as follows with [T ] = {1, 2, ...T}:

minimize
∑
t∈[T ]

(
∑
j∈J

∑
i∈I

wt
id

t
ijy

t
ij + ztijg +

∑
j∈J

f t
jx

t
j) (3.1)

subject to ytij − xt
j ≤ 0 ∀i ∈ I,∀j ∈ J,∀t ∈ [T ] , (3.2)∑

i∈I

ctiy
t
ij ≤ qtjx

t
j ∀j ∈ J,∀t ∈ [T ] , (3.3)

ztij ≥ xt
ij − xt+1

ij ∀i ∈ I,∀j ∈ J,∀t ∈ [T ] \T − 1, (3.4)

xt
j, y

t
ij ∈ {0, 1} ∀i ∈ I,∀j ∈ J,∀j ∈ J,∀t ∈ [T ] , (3.5)

ztij ∈ {0, 1} ∀i ∈ I,∀j ∈ J,∀t ∈ [T − 1] (3.6)

The constraints can be explained as follows:

• Objective Function (3.1): Minimize the total cost over the entire time
horizon [T ], which includes the assignment costs (

∑
j∈J
∑

i∈I w
t
id

t
ijy

t
ij), relo-

cation costs (ztijg) with a fixed relocation cost variable g, and facility estab-
lishment costs (

∑
j∈J f

t
jx

t
j).

• Constraint (3.2): Ensure that each demand point i at time t is assigned
to an open facility j at time t.

• Constraint (3.3): Ensure that the total demand assigned to a facility j at
time t does not exceed its capacity qtj.

• Constraint (3.4): Ensure the tracking of facility relocation costs by in-
troducing binary variable ztij that accounts for opening and closing facilities
between consecutive time steps.

• Constraints (3.5), (3.6), and (3.7): Define xt
j, ytij, and ztij as binary

variables, where xt
j = 1 if a facility is established at location j at time t and

0 otherwise, ytij = 1 if demand point i is served by facility j at time t and
0 otherwise, and ztij = 1 if there is a change in the facility serving demand
point i from time t to time t+ 1 and 0 otherwise.

In summary, the DDFLP aims to achieve an optimal balance between the costs as-
sociated with establishing and relocating facilities and the costs involved in meeting
demand across a dynamic environment. This method ensures that user demands
are met efficiently and cost-effectively over multiple time periods, accounting for
the changing locations of both facilities and clients (Eisenstat, Mathieu, and Sch-
abanel (2014) and An, Norouzi-Fard, and Svensson (2017)).
It is crucial to note that if the relocation cost g is set to zero, the optimal facility
locations xt at each time step t will match the solution of the traditional FLP



described in section 1.3. By disregarding relocation costs, each time step can be
treated independently, allowing for an optimal solution for each period without
considering the impact of relocating facilities. This emphasizes the trade-off be-
tween choosing an optimal solution for a given time step and the costs of relocating
too often.

2.1.5. Dynamic Stochastic Facility Location Problem

In many real-world applications, it is challenging to obtain upfront knowledge
of environmental dynamics, meaning the positions of facilities and clients evolve
unpredictably over time. The DDFLP does not capture these stochastic dynam-
ics. To address this, researchers have proposed the Dynamic Stochastic Facility
Location Problem (DSFLP), as suggested by Eisenstat, Mathieu, and Schabanel
(2014). Unlike the deterministic case, the stochastic nature of this problem means
the locations of clients and sometimes also facilities at step t are unknown, making
it impossible to model using the same approach.
The DSFLP uses Markovian approaches, as depicted by the work of Farahani, Abe-
dian, and Sharahi (2009a) based on Rosenthal, J. A. White, and Young (1978).
Formally, the problem includes the following components:

• Xt: Facility locations at time t (decision variable).

• At: Client locations at time t (stochastic variable).

• N : Set of possible locations for both facilities and clients, 1, ..., n.

• F : Facility relocation cost matrix, n× n.

• G: Service cost matrix, aggregating costs widij from the previous problem
formulation, n× n.

• P : Markov transition matrix for client locations, n× n.

• B: Discount factor.

The process is as follows:

• The decision-maker observes (Xt−1, At−1) and chooses Xt.

• The relocation cost F (Xt−1, Xt) is incurred.

• The probabilistic client locations At are realized.

• The service cost G(Xt, At) is incurred.



This process repeats, and the goal is to find a policy for choosing facility locations
to minimize the expected present worth of all costs:

minimize E

[
∞∑
t=1

[F (Xt−1, Xt) +G(Xt, At)]B
t−1

]
(4)

The objective is to minimize the expected value of the discounted sum of reloca-
tion and service costs over time. This optimization considers the trade-off between
selecting optimal facilities at each time step and the associated relocation costs,
both immediate and future (discounted). The use of the expected value emphasizes
the stochastic nature of this approach, accounting for uncertainty in the evolving
environment. It’s important to note that the literature does not provide a problem
formulation in which the assignment of customers to facilities is explicitly modeled
as part of the decision-making process. This omission is likely due to the stochas-
tic nature of the problem, where the actual positions of clients at time step t are
unknown, making it impractical to include constraints like 3.2 and 3.3 which rely
on the concrete knowledge of position of clients at t.

In summary, the p-median problem and its extensions, such as the FLP, Dynamic
DDFLP, and DSFLP, address the optimal placement and allocation of facilities
to minimize costs and maximize service effectiveness. The p-median problem fo-
cuses on selecting p facilities to minimize weighted distances, while the FLP ex-
tends this by incorporating facility establishment costs and capacity constraints.
The DDFLP further evolves to handle dynamic environments over multiple time
steps, optimizing both establishment and relocation costs. The DSFLP introduces
stochastic elements to account for uncertainty in client and facility locations over
time. Each formulation offers unique insights and solutions to complex logistical
challenges in varying contexts and undermines the development of relaxed versions
of the classic p-median problem while following the general p-median framework.

2.2. Classification of LA problems

To provide more precise definitions within the field of LA problems, the literature
presents various classification schemas. Although these schemas may show some
differences in detail, they generally adhere to a similar framework. This discus-
sion will primarily utilize and summarize the classification schemas provided by
Turkoglu and Genevois (2020), “Introduction to Location Theory and Models”
(2013), and Azarmand and Neishabouri (2009b) to offer a well-founded overview
of the essential aspects of LA problems. These classifications will aid in under-
standing the various dimensions and approaches that characterize the study and



implementation of LA models.

1. Space: This refers to the underlying environment used to model the problem.
According to Turkoglu and Genevois (2020), LA problems can be categorized
into discrete and continuous spaces. In continuous spaces, the potential loca-
tions for facilities and demands can be anywhere on a plane, allowing for flex-
ible modeling, such as positioning video cameras (C. ReVelle, Eiselt, and M.
Daskin (2008)). The plane is mostly a one-dimensional or two-dimensional
coordinate space. (Plastria (2001)). In contrast, in discrete spaces, both fa-
cilities and demands are restricted to a predefined and finite set of locations,
as detailed by Turkoglu and Genevois (2020) and Plastria (2001). Azarmand
and Neishabouri (2009b) introduces a third type, network space, where facili-
ties and demands can be located anywhere along the edges of a network, with
nodes merely marking the intersection of edges (Plastria (2001)). This type
of space serves as a hybrid between continuous and discrete models, offering
a limited continuous setting that is restricted to network edges. Azarmand
and Neishabouri (2009b) further clarify that network-based problems may be
either continuous or discrete, depending on whether the links are considered
as a continuous range of potential locations or if only the nodes are consid-
ered suitable for facility placement. Plastria (2001) explain that the term of
network problems is often used in a very restrictive sense, where only nodes
of the networks are target sites. Therefore, these kind of network problems
can be also framed as pure discrete problems and the network is only used
to model distances. We will stick to that interpretation in this thesis.

2. Graph and Tree: Problems on networks can be distinguished between prob-
lems that occur on trees and others that have to be formulated more general
on graphs. A tree is a network in which there is at most one path from
any node to any other node. In other words, a tree is an acyclic graph or
agraph with no cycles. Especially relevant to researchers in this field are
minimum spanning trees where there is exactly one path between any node
and any other node. If such a tree has N nodes, it will have N+1 edges. Tree
problems are often easier solvable. However, while there are some real world
problems that can be modelled as trees, e.g. parts of power transmission
and telecommunication networks, complex network structures often require
a general graph structure (“Introduction to Location Theory and Models”
(2013)).

3. Number of Facilities: In single facility settings, only the location of one
facility has to be determined. Conversely, in multi-facility problem the aim is
to locate simultaneously more than one facility (Azarmand and Neishabouri
(2009b)). Both can be assigned to the type of exogenous problems, because



the number is a priori fixed. Furthermore, the number facilities can also be
variable, and be made an model output itself. Problems of this kind are called
endogenous models (Turkoglu and Genevois (2020)). It is worth noting that
single-facility problems are much easier to solve than multi-facility problems
(“Introduction to Location Theory and Models” (2013)).

4. Static vs Dynamic: This classification focuses on the temporal aspect of the
problem. Static problems, also known as single-period location problems, in-
volve a scenario where the parameters remain constant throughout a single
period. On the other hand, dynamic location problems, which can also be
referred to as multi-period problems, involve multiple discrete time planning
horizons, with parameters that change over these periods, as described by
Turkoglu and Genevois (2020). Dynamic problems arise because of the more
realistic environment they provide as pointed out by Plastria (2001): ”Ex-
isting competition will most probably alter its strategy when it loses part of
or even all of its market share to a newcomer, implying that the competitive
environment changes. This leads to dynamic models which aim at describing
the action/reaction cycles of the competing actors.” It is important to men-
tion, that in the realm of dynamic problems exist also deeper classification
approaches. The authors there introduce refined categorization such as the
cause of change, number of changes, source of change (demand site or facility
site) or the time horizon (finite or infinite) (Farahani, Abedian, and Sharahi
(2009b)).

5. Distance Metric: Depending on the space of the problem, different distance
metrics have to be applied to compute distances between elements in the
model. A very common technique for problems modelled as networks is to use
the shortest distance between any pair of points (“Introduction to Location
Theory and Models” (2013)). In discrete and continous spaces, as common
distance metric like the Euclidean, Manhattan Distance or Chebyshev can
be used (Turkoglu and Genevois (2020), “Introduction to Location Theory
and Models” (2013)).

6. Deterministic vs Probabilistic: This classification differentiates how model
inputs are handled based on certainty. In deterministic models, all inputs
are assumed to be precisely known and remain constant, whereas in proba-
bilistic models, inputs are uncertain and subject to variability. For instance,
demand may fluctuate over time, requiring predictions that introduce uncer-
tainty into the model (Azarmand and Neishabouri (2009a)). Probabilistic
models may incorporate uncertainty through various methods; some inte-
grate probability distributions into conventional mathematical frameworks,
while others employ queuing models to handle these distributions (Owen and



M. S. Daskin (1998)). Typically in real-world applications, model inputs are
based on forecasts and are inherently uncertain. Thus, models are catego-
rized as deterministic if the inputs are considered or assumed certain, or
probabilistic if the inputs are acknowledged as uncertain (Klose and Drexl
(2005))

7. Capacitated vs Uncapacitated: A significant number of LA models, for exam-
ple the p-median and FLP, operate under the assumption that facilities have
unlimited capacity, classifying these as uncapacitated problems. Conversely,
other facility location models account for limited capacity by restricting the
allocation of demand to facilities, thus categorizing these as capacitated mod-
els (Klose and Drexl (2005)).

Some authors propose additional classification criteria for LA problems (Turkoglu
and Genevois 2020; Azarmand and Neishabouri 2009a). However, the criteria
outlined here offer a foundational orientation and allow us to frame our problems
broadly within this classification framework. Other criteria, such as multi-objective
settings, are either not relevant to our specific problem or are already encompassed
to some extent by the existing criteria.

2.3. Solution Approaches

2.3.1. General Introduction

The p-median problem is well-known to be NP-hard, as first demonstrated by
Kariv and Hakimi (1979). Extensions such as the static and dynamic FLP also
exhibit NP-hardness, adding further complexity (Fernandez and Landete (2015)).
Given this complexity, heuristic methods are often employed to find solutions. In
the following sections, common heuristic approaches for solving the LA problem
will be presented.

2.3.2. Classical Heuristic Approaches

According to Nenad Mladenovic et al. (2007) classical heuristics can be divided
into three groups:

• Constructive heuristics (CH): These start with an empty solution and
repeatedly extends the current solution until a complete solution is obtained
(Salhi (1997))). Examples are greedy heuristics (Whitaker (1983)), stingy
heuristics (Salhi and Atkinson (1995)), dual ascent heuristics (GalvÃ£o
(1980)) and composite heuristics (Salhi (1997))



• Local search (LS): These move from one solution to another within the
search space by making local changes until an optimal solution is found or
a specified time limit is reached (Michiels, Aarts, and Korst (2018)). Exam-
ples are: alternate heuristics (Maranzana (1964)) and interchange heuristics
(Hansen and N. Mladenovic (1997))

• Mathematical programming (MP): Combined with heuristics, they aim
to explore how theoretical optimization methods can be applied practically
to generate good, though not necessarily optimal, solutions to complex prob-
lems (Ball (2011)). Examples are: dynamic programming heuristics(Hribar
and M. S. Daskin (1997)), Lagrangian relaxation heuristics (Beasley (1993))
and aggregate heuristics (Bowerman, Calamai, and Brent Hall (1999))

For a detailled explanation of every heuristic refer to Nenad Mladenovic et al.
(2007).

2.3.3. Metaheuristics

Metaheuristics are iterative master processes that guide and modify subordinate
heuristics to efficiently generate high-quality solutions, either by working on a sin-
gle solution or a collection of solutions per iteration. These subordinate heuristics
can range from complex algorithms to simple local searches or construction meth-
ods (Voß (2008)). The metaheuristic family encompasses various techniques, such
as tabu search (Salhi (2002)), genetic search (Alp, Erkut, and Drezner (2003)),
heuristic concentration (Rosing et al. (1998)) and more.
Although these metaheuristic techniques have proven effective, the rapid advance-
ments in artificial intelligence have opened up new possibilities. Modern meta-
heuristics, particularly those based on neural networks (NNs), offer powerful al-
ternatives for tackling complex optimization problems (Nenad Mladenovic et al.
(2007)).

2.3.4. Modern Heuristics Based on Neural Networks

NNs are inspired by the biological neurons of the brain and consist of intercon-
nected computational ”neurons” arranged in layers. These networks use weighted
signal channels (synaptic weights) to process inputs through a nonlinear activation
function, allowing them to approximate arbitrary nonlinear functions. In recent
years, artificial (multi-layer) neural network (NN) models have become crucial tools
for solving complex computational problems, including complex multi-parameter
problems (Lachhwani (2020)). As pointed out by Hornik, Stinchcombe, and H.
White (1989), NNs are universal function approximators. This makes them espe-
cially suitable for operation research problems. They offer a heuristic alternative



(Burke and Ignizio (1992)) capable of deriving near-optimal solutions. NNs are
usually calibrated using gradient based algorithms. They use a large amount
of data to construct a multidimensional function that captures relations in that
data. The model parameters are adjusted at every optimization step until conver-
gence is reached. The most commonly used algorithm is called backpropagation,
which refers to the traditional manner in which learning proceeds in artificial neu-
ral networks, through which connection weights are calibrated to maximize training
accuracy.” (Rohlfs (2023)). Refer to Figure 2.1 for a simplified visual depiction
of layers in an NN. In operations research, for example, Dominguez Merino and
Muñoz Perez (2002) introduced the application of a two-layer NN to approximately
solve the p-median problem with fairly good results.

Figure 2.1.: The Figure illustrates the simplest architecture of a NN, a multi-
layered feed-forward neural network. The input layer consists of neu-
rons Ii1, Ii2, . . . , IiM with linear activation functions. The hidden layer
consists of neurons H11, H1k, . . . , H0 with log-sigmoid activation func-
tions. The output layer consists of neurons O1, O2, . . . , Op with tan-
sigmoid activation functions. Each neuron in a layer is connected
to every neuron in the subsequent layer, forming a fully connected
network. By incorporating non-linear activation functions in the hid-
den and output layers, the network is capable of approximating non-
linear functions, allowing it to model complex relationships (Lachh-
wani (2020)).

As we delve deeper into neural network-based heuristics, it is important to recog-
nize the diversity of NN architectures that have been developed to address various
data structures. Each of these architectures offers unique advantages and is suited



for different types of problems. Here, we will explore some of the most promi-
nent NN architectures used in modern heuristics and are applied to the field of
operations research:

• Recurrent NNs (RNNs): While feed-forward NNs are well suited for
numerical, table-organized data it is not able to capture autoregressive de-
pendencies in the data. Therefore, RNNs were developed. They are able
to process sequential data by constructing a latent representation of the
dependence of the data that is propagated through the network (Caterini
and Chang (2018)). Dominguez and Munoz (2008) used a RNN for the LA
problem.

• Convolutional NNs (CNNs): In contrast to feed-forward NNs, CNNs
have a unique architecture where hidden layer neurons are only connected
to a subset of neurons in the previous layer, creating sparse connectivity.
This allows CNNs to learn features implicitly and efficiently handle spatial
data. The deep architecture of CNNs results in hierarchical feature extrac-
tion, where early layers detect simple patterns such as edges or color blobs,
intermediate layers identify shapes and object parts, and final layers recog-
nize complete objects. This hierarchical approach makes CNNs particularly
effective for image and video processing tasks (Aloysius and Geetha (2017)).
For example, Matis and Tarabek (2023) have shown how CNNs can be used
for LA problems.

• Graph NNs (GNNs): Graphs are flexible mathematical objects that can
represent many entities and knowledge from different domains. GNNs are
mathematical models that can learn functions over graphs and are a lead-
ing approach for building predictive models on graph-structured data. This
combination has enabled GNNs to advance the state of the art in many dis-
ciplines by effectively capturing relationships and dependencies in complex,
non-Euclidean data structures (Corso et al. (2024)). They will be explained
in a more detailed way later. Many problems in operations research are
modeled as graphs. For example, the LA problem in the network space.
Thus, GNNs offer a well-foundated method to use the approximative power
of NNs, while exploiting the structural characteristics of graphs. For in-
stance, C. Wang et al. (2023) and Liu, X. Yan, and Yaochu Jin (2023) make
use of GNNs to solve the LA problem.

2.3.5. Modern Heuristics Based on Reinforcement Learning

While, in theory, NNs should be able to approximate functions arbitrarily well,
they require a lot of data to converge, i.e. being trained. This data has to be



collected a-priori. Hence, the model is trained in an offline manner, where data
is acquired before calibrating the model’s parameter. This is called offline learn-
ing. It is inefficient in time and space costs and is hardly scalable for large-scale
applications since the model has to be recalibrated from scratch when new data
arrives (Hoi et al. (2021)). Additionally, data collection in operation research is
traditionally difficult. For example, some institutions may not be interested in
or are secretive about the disclosure of their data (Simpson, Genovese, and Rais
Mohamad Mokhtar (2022)).
Conversely, online-learning methods do not need the data to be collected before.
Algorithms using online learning use freshly received data at every time step to
learn and update the best predictor for future time step. The model is updated
instantly for every new data instance overcoming the drawbacks of offline learning
(Hoi et al. (2021)).
While there exist a lot of algorithms that use online learning, we will focus on
reinforcement learning (RL) in this thesis. RL involves an agent interacting with
an environment through actions based on the state and reward signals, aiming
to optimize a sequential decision-making policy for maximum cumulative rewards.
Rewards or penalties are assigned based on the agent’s actions, and RL algorithms
iteratively update the agent’s policy using these outcomes to improve future de-
cisions. The theoretical framework of RL is built on Markov Decision Processes
(MDPs). This means, that the conditional probability distribution of future states
of a stochastic process has the Markov property, i.e. it depends only on the current
state (Shakya, Pillai, and Chakrabarty (2023a)). The decision-making is modeled
with defined states and actions, enabling the prediction and optimization of ac-
tions for the best possible results (Shakya, Pillai, and Chakrabarty (2023b)). This
ongoing adaptability and iterative learning process align seamlessly with the prin-
ciples of online learning, allowing RL to efficiently integrate into environments
where data evolves or accumulates continuously.
Deep RL (DRL) integrates the advanced capabilities of deep learning architec-
tures, like RNNs, CNNs, and GNNs, in the RL framework to model and utilize
the underlying data in the most effective manner. These architectures enable DRL
to capture complex dependencies and patterns in data, enhancing the agent’s abil-
ity to make informed decisions based on learned experiences. By embedding these
neural network models, DRL can effectively process and learn from a variety of
data types and structures like sequential, spatial, or graph-based. This integration
not only boosts the learning capacity of RL agents but also extends their applica-
bility to a broader range of complex real-world problems, where adaptability and
efficient data utilization are crucial (Arulkumaran et al. 2017).
RL has increasingly proven to be a valuable heuristic in operations research (Sch-
neckenreither and Haeussler (2019), Wan, T. Li, and J. M. Wang (2023)) due to



its effectiveness in solving hard combinatorial optimization problems (Y. Yan et al.
(2022)) and often providing faster, higher-quality solutions compared to standard
heuristics, as highlighted by Q. Wang and Tang (2021). Another significant ad-
vantage of RL is its ability to model complex systems that are difficult to represent
with traditional optimization models or heuristic search rules, by constructing sim-
ulated environments where the RL algorithm can operate (Y. Yan et al. (2022)).
Furthermore, once trained, RL algorithms can deliver real-time solutions for oper-
ational systems in seconds (Y. Yan et al. (2022)), making them highly valuable for
practical problems that require immediate deployment of solutions. Finally, RL is
also already used specifically for LA problems (C. Wang et al. (2023), Guo, Xu,
and Yaohui Jin (2023), Yu et al. (2021), Klar, Glatt, and Aurich (2021)).
Given these advantages, this thesis will investigate the potential of RL and DRL,
enhanced by the capabilities of GNNs, for optimizing the LA problem. The next
chapter will explore these topics in depth, demonstrating how the combination of
RL and GNNs can effectively address the challenges in LA.

2.4. Research Gap and Contribution

The literature extensively explores, classifies, and provides traditional solution ap-
proaches to the LA problem. This is evident in the literature review table A.1
in Table A.1 in the appendix A, where the majority of cited works are sourced
from established operations research journals. These references primarily focus on
well-established descriptions of LA problems and classic heuristic methods.
Consequently, the application of RL to LA problems is relatively underexplored.
Most of the literature focussing on RL or GNNs for LA problems are either very
recent (2020-2024)1 or are often still preprints and not reviewed yet. Although
some innovative approaches have emerged, they remain in their early stages. For
instance, Yu et al. (2021) employ RL to optimize resource allocation in humanitar-
ian logistics following a disaster. A more recent study by Guo, Xu, and Yaohui Jin
(2023) integrates GNNs with RL to address the FLP. Their model aims to suggest
optimal facility relocations to minimize transportation costs. +
Despite this lack of research and literature, there is a general trend, noted by
C. Wang et al. (2023), of increasing academic and industrial interest in applying
machine learning to traditional NP-hard problems. Deep learning’s perceptual ca-
pabilities combined with RL’s reasoning abilities can effectively tackle large-scale
combinatorial optimization problems. This growing interest highlights a signifi-
cant research gap: the need for more sophisticated and practical applications of
DRL and GNNs in solving LA problems.
The primary contribution of this thesis is to address this gap by investigating

1See therefore also the Table A.2 and Figure A.1 in the appendix A



whether DRL in conjunction with GNNs can serve as a viable alternative to tra-
ditional heuristics for solving the traditional NP-hard LA problem. This research
will focus on a real-world scenario involving Replicated State Machines (RSM),
which can be conceptualized as a dynamic LA problem. The necessity for rapid
decision-making in this context, along with its ease of simulation, presents an ideal
opportunity for this investigation.
By developing a framework that incorporates DRL and GNNs, this thesis aims
to demonstrate the potential of modern GNN-based DRL approaches to enhance
traditional heuristics for LA problems. Specifically, this research will contribute
by:

1. Building the theoretical foundation to apply RL algorithms on the DSFLP,
establishing the path to apply them also on other LA problems

2. Proposing a DRL-based framework that leverages GNNs for solving dynamic
LA problems.

3. Applying this framework to a practical, real-world problem involving RSM,
to assess the framework’s effectiveness in scenarios requiring quick decision-
making and data generalization.

4. Building a reusable and adjustable simulation environment for the RSM
system that can be reused for other RL algorithms as it implements common
RL interfaces

These contributions will not only address the identified research gap but also offer
a new perspective on the application of advanced machine learning techniques in
operations research.



3. Reinforcement Learning

Generally speaking, RL involves an agent interacting with an environment E at
time step t through actions at based on the environment state st and reward
signals rt, aiming to optimize a sequential decision-making policy π for maximum
cumulative rewards. RL uses the formal framework of MDP. Refer to Figure 3.1
for a simplified visualization of this process. The goal of the agent is to maximize
the expected discounted sum of rewards, i.e. the return Gt. Formally, the return
Gt can be depicted as (Sutton and Barto (2018a)):

Gt = rt+1 + γrt+1 + γ2rt+2 + γ3rt+3 + ... = rt+1 + γGt+1 (5)

The state value function vπ(st) and action value function qπ(st, at) determine how
advantageous it is for the agent to be in a particular state or to perform an action
in that state. The value functions are useful in RL for estimating optimal policies.
These value functions are primarily based on expected future rewards or returns.
The expected return for a given policy π is vπ(st) if the agent starts from state st
and then follows the policy π. For a given policy, the state value function can be
expressed as:

vπ(s) = Eπ [Gt | s] = Eπ

[
∞∑
k=0

γkrt+k+1 | s

]
∀s ∈ S (6)

where S is the set of all possible states, i.e. the state space.
If an agent starts from the state s and performs an action a and follows the policy π
thereafter, then the expected return is known as the action value function qπ(s, a)
and expressed as:

qπ(s, a) = Eπ [Gt | st, at] = Eπ

[
∞∑
k=0

γkrt+k+1 | s, a

]
∀s ∈ S, a ∈ A (7)

where A is the set of all possible actions, i.e. the action space.
The state value vπ(s) of a state would theoretically represent the average reward
obtained by the agent for visiting it a large number of times. Similarly, the agent’s
average reward for repeatedly performing a fixed action a in a given state s would
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Figure 3.1.: RL cycle of an agent interacting with an environment (Shehab,
Khader, and Alia (2019))

be the state’s action value. Mathematically we can calculate the value functions
using equations 6 and 7 by recursively unrolling them as :

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s′)] (8)

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)

[
r + γ

∑
a

π(a′|s′)qπ(s′, a′)

]
(9)

Equations 8 and 9 are known as Bellman Equations which represent the recursive
relationship between the value functions of current and successor states (Shakya,
Pillai, and Chakrabarty (2023a)).
The optimal policy π∗ can then be derived using optimal value functions v∗(s) and
q∗(s, a) as follows (Sutton and Barto (2018a)):

v∗(s) = max
π

vπ(s) = max
a

(
r + γ

∑
s′,r

p(s′, r|s, a)v∗(s′)

)
(10)

q∗(s, a) = max
π

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)
[
r + γmax

a′
(q∗(s′, a′))

]
(11)

This forms the foundation of any RL algorithm. We will make special use of the
state value function vπ(s) later to derive the theoretical justification to apply RL
on DSFLP.



4. Graph Neural Networks

4.1. Introduction

As previously discussed, there are various types of neural networks, each utilizing
different data structures. Graph Neural Networks (GNNs) are a specific class of
neural networks designed to handle data organized in graph structures (Khemani
et al. (2024)). Let G = (V,E) be a graph consisting of vertices V and edges
E. Let xv ∈ RdV and xe = x(u,v) ∈ RdE be the corresponding node and edge
features (between node v and u) of dimension dV and dE. Node features are
attributes or properties associated with each node in a graph, while edge features
are attributes or properties associated with the connections (edges) between pairs
of nodes. The core concept of GNNs is that nodes in a graph symbolize objects
or concepts, while edges represent the relationships between them. Consequently,
for each node v ∈ V , we can construct a hidden state hv ∈ Rd(h) , that is based on
the information contained in the neighborhood of v, denoted N(v) with dimension
d(h).
Formally speaking, let fw be a function parametrized by w that expresses the
dependence of a node v on its neighborhood N(v). We then can depict h

(1)
v ∈ Rd(1) ,

the first hidden state of node v as (Scarselli et al. (2009)):

h(1)
v = fw(xv, {(x(v,u), xu) | ∀u ∈ N(v)} (12)

where d(1) is the dimension of first the hidden state, xv is the feature vector of node
v and (x(v,u), xu) are the feature vectors of the edge between node v and u and
the node u itself for all nodes in the neighborhood of v, i.e. N(v). As shown, the

hidden state h
(1)
v uses the edge and node feature information of neighboring nodes

to derive the new representation for the node v. Performing this transformation
for every node in the graph results in a new graph representation G′, where the
node features xv are replaced by h

(1)
v at each node. This new graph G′ can then

be used for further processing. For example, one could train a classifier on top of
each node representation h

(1)
v predicting classes for each node or construct another

hidden state h
(2)
v based on h

(1)
v instead of xv.
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4.2. Message Passing

While introducing the general idea of GNNs, we used a function fw that should
capture the relationship between nodes using node and edge feature information.
The concrete design of this function will be the content of this section. The
core principle when constructing such a function fw is called message passing.
Analogously to before, we take a graph G = (V,E) with node and edge features

xv, xe to create hidden states or node embedding h
(l)
v ∈ Rd(l) , where h

(l)
v is the

hidden state of node v after performing l iterations of the message passing having
the dimension d(l) (Khemani et al. (2024)). If neural networks are used at any step
during this process, we refer to this as neural message passing (Hamilton (2020a)).
Stating xv = h0

v and l > 0 the message-passing mechanism consists of a potential
transformation step, an aggregation, and an update step. For simplicity, edge
features are left out for now:

1. Message transformation: In the transformation step, a transformation
function/matrix W

(l)
neigh is applied to the feature vector of the neighboring

nodes u ∈ N(v). This optional step is done to transform the feature factors
into a more suitable format for further processing

2. Message Aggregation: In the aggregations step, the possibly transformed
feature vectors of the neighbors are aggregated using some kind of aggrega-
tion function, e.g. mean or sum to get mN(u) (Khemani et al. (2024)):

m
(l)
N(u) = agg({W (l)

neighh
(l−1)
u | ∀u ∈ N(v)} (13)

3. Feature update: In the feature update step, the current node embedding,
h
(l−1)
v gets updated using the current embedding, optionally transformed by

W
(l)
neigh and the aggregated neighboring node embeddings m

(l)
N(u) The update

function is usually a neural network (Khemani et al. (2024)), however at
least differentiable (Hamilton (2020a)):

h(l)
v = update(W

(l)
selfh

(l−1)
v ,m

(l)
N(u)) (14)

The updated node embedding h
(l)
v contains now information of the node embed-

dings of the node neighborhood. Refer to Figure 3.1 for a visualization of this
process. A more general approach, that also leverages the power of edge features
would simply adjust the aggregation step of equation 6. The goal then is, to form
more robust node embeddings that incorporate also the type of relation between
nodes, quantified by edge features. As pointed out by Hamilton (2020b), also
respecting edge features x(v,u) requires at the most basic level an adjustment of



equation 6 as follows:

m
(l)
N(u) = agg({W (l)(h(l−1)

u ⊕ x(v,u)) | ∀u ∈ N(v)} (15)

where (h
(l−1)
u ⊕ x(v,u)) ∈ RdH+dE denotes the concatenation of node embedding

vector h(l−1) with edge feature x(v,u).

It is worth mentioning that there exist other methods to account for edge fea-
tures (Schlichtkrull et al. (2017), Y. Li et al. (2017)) and J. Chen and H. Chen
(2021)). However they all build up on the same foundation as equation 8 by find-
ing ways to incorporate edge features into the message aggregation step.

At each iteration, each node gathers information from its 1-hop neighborhood.
As we apply multiple GNN layers, meaning multiple message-passing iterations,
each node gradually collects information from nodes that are farther away. This
happens because, at iteration l, the node embeddings from iteration l− 1 serve as
the input. When l > 1, the neighboring node embeddings {h(l−1)

u | ∀u ∈ N(v)}
already contain information from their respective neighborhoods. Using these em-
beddings as input for the next iteration l, we see that information from not only
the immediate neighbors but also the neighbors’ neighbors is aggregated. For in-
stance, at iteration 2 h

(2)
v includes information from its 2-hop neighborhood. This

process continues, such that after k iterations, each node embedding incorporates
data from its k-hop neighborhood. (Khemani et al. (2024)). For a visualization of
this process refer to Figure 3.2. However, it is important to note that this process
cannot continue infinitely because of the potential of oversmoothing where node
embeddings of different nodes start to converge when the number of layers goes to
infinity. The GNN loses then all of its expressive power. 1

After applying k GNN layers, we obtain a new graph G(k) which consists of the
node embeddings {h(k)

v | ∀v ∈ V } and the original edges E. The node embeddings

can be concatenated into a matrix H(k) ∈ R|V |×d(l) . This matrix can then be used
for further processing. One option is to make predictions at the node level, which
requires a predictor Cnode : R|V |×d(l) 7→ R|V | (Xiao et al. (2021)). Another option is
to make predictions at the graph level, which also requires a predictor. However,
before applying the predictor, a global pooling operation P : R|V |×d(l) 7→ Rd(l)

is performed to obtain a global graph embedding. This embedding can then be
used by a graph-level predictor Cgraph : Rd(l) → R to make graph-level predictions
(Reiser et al. (2022)). Figure 4.3 visualizes the pooling operation.

1For a more detailed explanation of this concept see the appendix B
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tures. No edge feature for simplification. Visualization of one GNN
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4.3. GNN models

The last part of this section gives an overview of three important aggregation
methods widely used when working with GNNs.
First, the basic GNN message passing is defined as:

h(l)
v = σ

W
(l)
selfh

(l−1)
v +W

(l)
neigh

∑
u∈N(v)

h(l−1)
u + b(l)

 (16)

where W
(l)
self ,W

(l)
neigh ∈ Rd(l)×d1(l−1) are trainable parameter matrices, σ denotes

an elementwise non-linearitiy (e.g. tanh or ReLU) and b(l) is a trainable bias
term (Hamilton (2020a)). Sticking to the message passing notation, we can use
equations 6 and 7 and specify them as follows:

Aggregation: m
(l)
N(u) =

∑
u∈N(v)

h(l−1)
u + b(l) (17)

Update: update(h(l−1
v ),m

(l)
N(u)) = σ

(
W

(l)
selfh

(l−1
v +W

(l)
neighm

(l)
N(u)

)
(18)

The aggregation involves a simple summation of the neighboring node embedding.
The update step uses two different weight matrics to transform the aggregated
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message and the original node embedding to form the new node embedding h
(l)
v .

It is worth noting, that the notation we used, i.e. equations 9 to 11, depicts how
the message passing step affects the node embedding of one specific node v in layer
l. However, we can also use the concatenation matrix of all node embeddings H(l).
This matrix lets us then formulate the message passing algorithm for all nodes
simultaneously, i.e. for the whole graph as follows:

H(l) = σ
(
AH(l−1)W

(l)
neigh +H(l−1)W

(l)
self

)
(19)

where A is the adjacency matrix of the graph. This lets us get rid of the sum
over the neighboring nodes from equation 9, because non neighboring nodes have
a value of 0 in A and are therefore ignored. This graph level formulation will be
used sometimes when it is convenient.

Second, another fundamental aggregation method used in GNNs is the one of
Graph Convolutional Networks (GCN) (Kipf and Welling (2017)). The aggrega-
tion process, known as symmetric-normalized aggregation (Hamilton (2020a)) is
given as follows:

h(l)
v = σ

W (l)
∑

u∈N(v)∪v

h
(l−1)
u√

|N(u)||N(v)|

 (19)

where W (l) is a learnable parameter matrix of layer l.
Unlike Equation 9, this formulation includes a normalization of the node em-
beddings h

(l−1)
u by

√
|N(u)||N(v)|. This symmetric normalization helps prevent

numerical instabilities (Kipf and Welling (2017)). Additionally, the GCN employs
a shared transformation matrix W (l) for both the neighboring nodes and the node
itself, rather than using two distinct weight matrices. This strategy helps avoid
overfitting and reduces the model’s complexity and the number of parameters.
(Kipf and Welling (2017)). The graph-level formulation is represented as:

H(l) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l−1)W (l)

)
(20)

Here Ã = A + I is the adjacency matrix A with added self-loops at the diagonal,
ensuring that the node embeddings h

(l−1)
v of the current node are also considered.

Without this addition, the diagonal entries would be zero, leading to the node’s
features being ignored. The shared weight matrix W (l), accounts for both the
neighboring nodes and the node itself.
D̃ = D + I is the degree D matrix of the graph with added self-loops, such that
D̃vv = deg(v) + 1, i.e. the degree of node v plus one. This adjustment ensures



that the node itself is considered during updates and maintains the integrity of
the normalization term. The term D̃− 1

2 represents the inverse square root of the
degree matrix, incorporating the symmetric normalization.

Finally, the Graph Attention Network (GAT) builds upon the normalization idea
of GCNs. Instead of predetermining the contribution of each neighboring node
embedding by setting the normalization to 1√

|N(u)||N(v)|
the GAT introduces a

learnable weight α(v,u) that represents the importance of node u when updating
node v relative to all nodes u ∈ N(v).
To determine α(u,v), Veličković et al. (2018) suggest applying an attention mecha-

nism a : Rd(l) × Rd(l) 7→ R on h
(l−1)
v and h

(l−1)
u . Formally, this is:

e(u,v) = a(h(l−1)
v , h(l−1)

u ) (21)

The attention mechanism a follows Vaswani et al. (2023), usually used in the field
of natural language processing for modern models like GPT. 2. Normalization is
then applied to all e(v,u)∀u ∈ N(v) to derive α(v,u):

α(v,u) =
exp
(
e(v,u)

)∑
w∈N(v) exp

(
e(v,w)

) (22)

such that
∑

u∈N(v) α(u,v) = 1. If we set α(u,v) =
1√

|N(u)||N(v)|
, we get the GCN again.

This shows that α(u,v) represents the normalized importance of neighboring node
embeddings for node v.
The update formula on the node level is:

h(l)
v = σ

 ∑
u∈N(v)∪v

α(u,v)W
(l)h(l−1)

u

 (23)

and on the graph level:

H(l) = σ
(
AαH

(l−1)
)

(24)

where Aα contains the attention factors from equation 22.
Each approach enhances message passing by improving the model’s ability to dy-
namically assess and adjust the significance of neighboring nodes. While GCNs
operate under the assumption that each neighbor contributes equally to the node’s

2The exact description of the attention mechanism is out of scope for this thesis, but can be
read in the paper Vaswani et al. (2023).



representation, GATs refine this by learning to assign different attention weights,
thereby allowing the model to focus on more relevant nodes.
This nuanced understanding of GNNs forms the backbone of this thesis. GNNs
are not merely tools used within the study but are integral to the proposed solu-
tion approach. By rigorously exploring and leveraging their capabilities, this work
aims to push the boundaries of what can be achieved in graph-based learning tasks.
The insights gained from understanding these models’ underlying mechanisms are
essential, as they directly inform the design and implementation of the solutions
discussed in the subsequent chapters. Thus, a thorough examination and appli-
cation of GNNs are neccesary and critical for addressing the challenges tackled in
this thesis.



5. Practical Problem: Replicated
State Machines

5.1. Introducing Replicated State Machines

A State Machine is defined by a set of commands C and states S. Each com-
mand is a specific action that can change the machine’s state by modifying these
variables or by producing some kind of output with a process f defined as either
f : C × S 7→ S or f : C × S 7→ O, depending on whether the process changes the
internal state of the system or produces some output in the output space O. The
execution of these commands is deterministic (Schneider (1990)), i.e., if ci, cj ∈ C
with ci = cj and sm ∈ S is the current state of the machine, then we can state
that f(ci, sm) = f(cj, sm) = sn with n ̸= m (analogously if f maps to O).
Clients interact with state machines by requesting the execution of a command.
This involves specifying which state machine to use, the particular command to
execute, and providing any necessary information the command might require to
run. The state machine processes these requests one at a time, and as a result,
can perform actions such as activating physical devices (actuators), interacting
with peripheral devices (like disks or terminals), or responding to clients who are
waiting for the outcome of their requests Schneider (1990).

Given their susceptibility to faults, state machines may fail during command ex-
ecution, affecting the output. To mitigate this, State Machine Replication was
introduced. This approach involves replicating the state machine across multi-
ple processors in a distributed system. A fault-tolerant state machine is achieved
by ensuring that each replica, operated by a non-faulty processor, starts in the
identical initial state and processes the same requests in the same sequence. This
guarantees that all replicas, given their deterministic behavior, produce the same
output. Assuming each failure impacts only one processor or one replica, the
correct output can be obtained by aggregating the outputs of the replicas. This
aggregation often involves a majority vote mechanism or consensus to address dis-
crepancies arising from failures (Schneider (1990)).
Typically, a leading replica orchestrates this process, distributing requests to fol-
lowers for execution and consensus, a critical step in achieving fault tolerance and
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handling operational delays effectively (Lawniczak and Distler (2021)).
Every communication step in this process is affected by some request delay, typ-
ically measured by the latency. In contrast to plain request-response schemata,
where the delay is only considered between the machine and the client, the Repli-
cated State Machine (RSM) scenario adds additional delay sources due to the
needed machine-to-machine communication. The delay is accumulated for each
request passing step (Köstler et al. (2023)).

The expansion of computer networks to a global scale necessitates robust, fault-
tolerant systems accessible worldwide. Planetary State Replication extends tra-
ditional state machine replication to large networks, exemplified by data centers
(which are the State Machines in this setup) serving globally distributed clients.
Long geographical distances between clients and data centers negatively impact
the request delay of such global systems. As elaborated earlier, the additional
complexity of State Machine Replication even worsens this (Köstler et al. (2023)).

Global networks often rely on a select few data centers from a larger pool to
act as replicas, primarily to manage costs effectively. For instance, as proposed by
Köstler et al. (2023), 4 out of 10 data centers are used as replicas. The configura-
tion that determines which data centers are actually used as replicas (tactice data
centers) is dynamic, i.e. it can be adjusted during the system’s run. Further, client
positions vary during different daytime, such that the majority of the requests also
come from different regions.
Consequently, this creates the possibility to dynamically optimize the system’s
configuration, such that the overall delay, or latency, is minimized. For instance, if
the current peak of client requests originate in East USA, but some or all replicas
are located in East Asia, the latency is much higher than in a comparable con-
figuration with replicas mainly located in East Asia. For a visualization refer to
Figure 5.1.

5.2. Problem Formulation

Let L = {1, 2, ..., n} be the set of all possible data center locations and Ct =
{n+ 1, n+ 2, ...} the set of client locations at time step t. Further, let d(u,v)t ∈ R
be the latency between location or client u and location or client v at time step t.
The RSM system can then be modeled as a dynamic graph Gt = (Vt, Et), where
the nodes are given by Vt = Ct ∪ L and the edges are given by Et = {(u, v)t |
∀u, v ∈ Vt} = {d(u,v)t | ∀u, v ∈ Vt}. A dynamic graph is a graph whose edges
and/or nodes change over time (Harary and Gupta (1997)), undermined by the
subscript t which denotes the instance of a graph at time step t. Let Dt ⊂ L be



Figure 5.1.: These maps show the active replicas (black-filled circles) and all pos-
sible locations (non-filled circles) at different daytime. At different
daytime, most client requests (darkened areas) come from different
locations. In this case, the data centers are placed optimally given the
current peak of the client requests (Köstler et al. (2023)). This graphic
displays the client movement starting at 06:00 am in the upper left,
finishing at around 08:00 pm in the evening.

the set of currently active data centers. The goal is then to find a configuration
D∗

t that minimizes the aggregated latency of the system computed by the aggrega-
tor F (Gt) plus the reconfiguration costs and penalty costs given by K(Dt−1, Dt).
Penalty costs are additional constraints specificly used for the RSM problem1. For
example, if a location gets selected as new active data center in step t + 1 which
was not a passive data center2 additional penalty costs are incurred.

Considering this property, one can see that the RSM problem holds notable similar-
ities with LA problems in general, but especially with FLPs. We can interchange
facilities with data centers, demand points with clients, demand quantity with
number of requests sent per client, and distances with latencies, emphasizing the
similarity. As all clients send requests to all data centers there is no need to as-
sign each client to exactly one data center (facility). This offers a more simple

1The exact details of the penalties for the RSM system are out of scope for this thesis but can
be studied in Köstler et al. (2023)

2A passive data center is a data center that collects latency information around its location.
Changing a passive data center to an active data center is cheaper than changing an inactive
data center to an active data center. It is like an additional information source that can be
used efficiently but is not controlled by the solution algorithm directly.
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Figure 5.2.: Simplified setup for a RSM system: six potential locations, four ac-
tive data centers (r1, r2, r3, r4) two clients (c1, c2) and edges denoting
latencies

access to the problem (constraints that required these assignments can therefore
be skipped). Hence, a concrete assignment about which client has to communicate
with which data center is not needed. Refer to Figure 5.2 for a visual clarification.
We can then assign the RSM problem to the broad scope of LA problems by using
the classification schema from section 2.2.

1. Space: At first, data center locations are discrete, since they are predeter-
mined and do not change over time. Client locations are in general continu-
ous, as they can appear theoretically everywhere on the planet. In practice,
however, client locations are often modeled using simulations or occur in
similar locations making them also assignable to the discrete space. For this
thesis, we will therefore model both clients and locations in the discrete space
3

2. Graph and Tree: The problem can be modeled as a graph

3. Number of Facilities: For this problem setup, the number of facilities/data
centers can be either fixed or variable. Mostly, however, the number of data
centers will be predetermined and therefore fixed.

4. Static vs dynamic: As shown earlier, the nature of the system is dynamic.

3To account for the continuous nature of client location, we can set a large upper bound for
possible client locations. In each episode then, only a random subset will be actually modeled.



5. Distance Metric: Latency is used as the distance metric

6. Deterministic vs Probabilistic: As the movement of clients is not predictable
accurately, the system dynamic is stochastic, i.e. probabilistic. Simulations
use different kinds of distributions, to model the client movement, accentu-
ating the stochastic nature of the problem.

7. Capacitated vs Uncapacitated: As data centers can handle an unlimited
amount of requests, the problem can be assigned to the uncapacitated cate-
gory.

Using this classification scheme and the fact that the system of RSM is based on
a dynamic, stochastic client movement lets us frame the problem as a DSFLP.
Furthermore the DSFLP does not explicitly model the assignment of clients to
facilities, which aligns well with the given RSM setup where each client interacts
with every data center. This enables the orientation towards the optimization
intuition of DSFLP which serves as a theoretical foundation for later suggested
solution approach. In its most basic form, the goal of DFSLP applied to the given
problem can be noted formally as:

minimize
dt ∈ P(L)

E

[
∞∑
t=1

[F (Gt+1) +K(dt−1, dt)]B
t−1

]

where P(L) is the power set of data center locations such that dt is a possible
configuration of active data centers. Gt+1 is the new state, i.e. graph instance, of
the system using the new configuration dt and new client positions Ct+1. B is the
known discount factor from DSFLP.

Comparison of problem components
Location Allocation RSM
Facilities Data centers
Demand points Clients
Demand quantity Number of requests
Distance Latency

Figure 5.3.: Depiction of relation of components in LA problem and RSM problem



5.3. Proposed Solution: Graph Neural Network
based Reinforcement Learning

5.3.1. Graph Neural Networks as Model Foundation

GNNs have proven highly effective in understanding and working with graph-
structured data. This capability will be leveraged to formulate an optimization
approach for the RSM problem. Given the current state of the system at time
step t, modeled as a graph Gt = (Vt, Et) = (Ct ∪ Lt, {d(u,v)t | ∀u, v ∈ Vt}) and
corresponding node features XV ∈ R|Vt|×3, where node features are the number
of requests, the type of location (active, inactive, passive, client) and the current
time step, we aim to construct a function f that maps the current state of the
system to a relocation tuple (i, j) of nodes. Let G =

⋃∞
t=1Gt and V =

⋃∞
t=1 Vt

represent the global collection of all graph instances and their respective nodes.
The signature of f can be described as:

f : G 7→ V × V, f(Gt) = (i, j) (25)

where the output relocation tuple (i, j) indicates that i ∈ Dt∪∅ is the location of
currently active data centers to be removed, and j ∈ (L\Dt)∪∅ is the location of
currently inactive data centers to be added. The union with the empty set allows
for the possibility of no removals or additions. Using this reconfiguration tuple,
we state the following transition identity for the set of active data centers:

Dt+1 = (Dt \ i) ∪ j (26)

This approach enables the model to make gradual adjustments at each time step.
Possible system configurations include:

• i = j: No reconfiguration is done

• i = ∅ and j ̸= ∅: The amount of active data centers increases

• i ̸= ∅ and j = ∅: The amount of active data centers decreases

• i ̸= ∅ and j ̸= ∅: The amount of active data centers stays constant

These relocation options illustrate the potential reconfiguration actions the model
can undertake. By applying multiple reconfiguration steps, the model can directly
set the number of active data centers, even though adjustments are made one step
at a time.

The function f is implemented as a GNN, which outputs, for every location node



v ∈ L, two probabilities piv and pjv, ensuring that
∑
v∈L

piv = 1 and
∑
v∈L

pjv = 1.

Formally, we need a predictor:

CRSM : R|L|×d(l) 7→ R|L|×2 (27)

that maps the final node embeddings of the location nodes H(l) to the desired
probabilities.
A critical component of this approach is the training of the GNN. Typically, this
is done offline with a supervised learning objective, where a dataset is created con-
taining pairs of input and target data. For the RSM case, the dataset would consist
of graph instances Gt with corresponding optimal relocation tuples (i, j)targett . This
data is used to train the GNN to imitate the optimal relocation pattern and gen-
eralize to unseen data. This is achieved using a loss function L that quantifies the
quality of model predictions GNN(Gt) = (i, j)predt , rewarding good predictions and
penalizing poor ones. The objective is to minimize L. Let θ be the parameters of
the GNN. Formally, this can be expressed as:

minimize
θ

L((i, j)predt , (i, j)targett ) (28)

However, as discussed in Section 2.3.5, using supervised or offline learning for
combinatorial problems like the RSM problem is challenging for several reasons:

1. Large Dataset: A large dataset requires assigning the optimal relocation
tuple for every instance, which is not scalable due to the NP-hardness of the
problem.

2. Overfitting Risk: There is a high risk of overfitting, where the model mem-
orizes specific mappings from graph instances to relocation tuples instead of
generalizing, leading to poor performance on unseen data.

3. Retraining: The need for retraining arises when new system dynamics occur
or when the system’s setup changes.

4. Poor performance feedback: Traditional loss functions in offline learning
do not account for the degree of suboptimality in predictions. They treat
any deviation from the optimal relocation as equally incorrect, without con-
sidering that some incorrect predictions might still be near-optimal. This
lack of nuanced feedback prevents the model from dynamically adjusting its
learning based on the severity of errors.

The limitations of offline learning highlight the advantages of online learning
methods for the given scenario. Therefore, the next section introduces an online-
learning-based approach using RL



5.3.2. Reinforcement Learning as Training Approach

Unlike offline learning, online learning approaches gather training data through
interaction with an environment. In essence, online learning relies on the quality
and quantity of data generated from these interactions rather than on a prede-
fined dataset. RL is a widely used methodology in online learning. It operates on
the principles of an agent interacting with an environment, receiving rewards, and
transitioning to new states, which aligns perfectly with online learning principles.

The application of RL to the RSM problem is particularly promising for several
practical and theoretical reasons:

1. Unsupervised Training: The RSM problem, being a large-scale optimiza-
tion challenge, cannot be effectively tackled using supervised training in an
offline manner. RL, as an online learning approach, provides a suitable so-
lution by continuously learning from interactions with the environment

2. Quick Decision Making: The RSM setup demands rapid decision-making
at each optimization step. Traditional heuristics often struggle with large-
scale instances due to long runtimes (Cavalcanti Costa, Mei, and Zhang
(2021)). The generalizing capabilities of RL mitigate this issue, offering
quick and satisfactorily accurate solutions.

3. Theoretical Foundation: The theoretical underpinnings of the DSFLP
offer a robust foundation for reframing the RSM problem within the realm
of RL.

To comprehend this in detail, we first need to explain the solution approach for
the DSFLP, using the notation provided in the corresponding section 2.1.5 .
The authors employ a policy K that specifies a location k(i, j) ∈ N to which
the facility is moved whenever the decision-maker’s observation of the state is
(i, j). This incurs a cost of f(i, k(i, j)) + g(k(i, j), l). Refer to Figure 5.4 for a
simplified visualization of this process. We can define the expected service cost
matrix W = PG, where P is the Markov transition matrix. The expected service
costs depend on the stochastic client positions, which are accounted for by the
transition matrix P . If a system operates indefinitely under policy K, then the
total expected costs vK(i, j) are characterized by state-value equations (Rosenthal,
J. A. White, and Young (1978)):

vK(i, j) = f(i, k(i, j) + w(j, k(i, j)) + β
n∑

l=1

p(j, l)vK(k(i, j), l), ∀(i, j) ∈ N ×N

(29)
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Figure 5.4.: Visualization of the DSFLP process where facilities Xt are relocated
by choice using a policy k and customer At move stochastically using
the Markov transition matrix

Examining equation 23 closely, the first term represents the relocation cost f(i, k(i, j))
plus the expected service costs w(j, k(i, j)) if we choose policy k in the current
state. The second term sums over all possible client locations [n] and adds the
state-value of being in that state vK(k(i, j), l) multiplied by the probability p(j, l)
of being in that state, determined by the transition matrix P . This essentially
computes the expected value of the next state-value using the stochastic client
positions4. This equation employs recursive principles by basing the value of the
current state on the value of all possible next states.
The optimal policy K∗ is then the one that minimizes the expected costs of the
system (Rosenthal, J. A. White, and Young (1978)), formally depicted as:

minimize
k ∈ N

{f(i, k) + w(j, k)) + β
n∑

l=1

p(j, l)vK(k, l)}, ∀(i, j) ∈ N ×N (30)

Thus, we aim to find policy k that minimizes the expected costs of the current
state based on a system of n(2) equations and n(2) unknowns. As n grows, this
approach becomes infeasible. Hence, new procedures are necessary to overcome
this dimensionality problem (Rosenthal, J. A. White, and Young (1978)). This is
where RL, and later DRL, comes into place.

As shown in chapter 3 , a foundational concept in RL is the Bellman equation,
which recursively unrolls the state-value function vπ(s), denoted by:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s′)] , for all s ∈ S (31)

where vπ(s) marks the value in state s given we follow policy π, π(a|s) represents
the probability of taking action a dictated by policy π, p(s′, r|s, a) is the probability
4For the discrete case, the expected value is computed as E[X] =

∑
P (x)x. Setting p = p(j, l)

and x = vK(k(i, j), l) results in the described identity.



of getting reward r and being in state s′ after taking action a in state s (retrieved
by the Markov transition probabilities), and r + γvπ(s′) is the immediate reward
plus the discounted value of the next state with discount factor γ (Sutton and
Barto (2018b)).
If we opt for deterministic action, instead of a distribution π(a|s) and deterministic
rewards r, the equation simplifies to:

vπ(s) = r + γ
∑
s′

p(s′|s, a)vπ(s′), for all s ∈ S (32)

The RL objective is now to find an optimal policy π∗ with the value vπ
∗
(s) by

outputting an action a that fulfills the following equation:

maximize
a

r + γ
∑
s′,r

p(s′, r|s, a)vπ(s′) (33)

It is evident that equation 32 shares notable similarities with equation 29. Both
denote the state value if we follow policy K or policy π, respectively. We can set
r = −(f(i, k(i, j)) + w(j, k(i, j))) and β = γ. Furthermore, we can set s = (i, j)
and s′ = (k(i, j), l), where l is the next client position realized with the probabil-
ity p(j, l). Finally, the probabilities can be aligned by setting p(j, l) = p(k(i, j), l |
i, j, k) = p(s′|s, a), as p(s′|s, a) simply denotes the transition probability from state
s to state s′ after taking action a. Equation 34 offers a visual simplification for
this substitution process.

r + γ
∑
s′,r

p(s′, r|s, a)vπ(s′)⇔ −(f(i, k(i, j) + w(j, k(i, j)))) + β
n∑

l=1

p(j, l)vK(k(i, j), l)

(34)

This allows us to reframe the state-value equation of the DSFLP as the state-value
equation of RL using the Bellman equation. Thus, finding an optimal policy π∗

that maximizes discounted cumulative rewards also serves as the optimal policy
K∗ = π∗ that minimizes the discounted cumulative costs as described in equation
30. Hence, the DSFLP can be understood as a Markov decision process that is
solvable by RL algorithms as presented in chapter 3 .

This derivation underscores the theoretical justification for applying RL algo-
rithms to the DSFLP, besides the practical benefits. A common RL algorithm
that solves the state-value equation is Dynamic Programming, which utilizes the
known Markov transition probabilities to find an optimal policy (Sutton and Barto



(2018c)). However, these transition probabilities are often unknown in real-world
applications. Therefore, other algorithms likeMonte Carlo Methods, Temporal Dif-
ference Learning, and Q-learning are employed to interact with the environment
and collect sampled transitions that approximate the real, unknown transition
probabilities. This adjustment is particularly useful for the RSM problem, where
transition probabilities are typically unknown. 5

In summary, reframing the DSFLP as a classic RL problem enables the appli-
cation of commonly used RL algorithms to find optimal relocation policies. Since
the DSFLP is the theoretical baseline for the RSM, RL algorithms that do not
rely on full knowledge of transition probabilities can be effectively applied to the
RSM problem.

5.3.3. Final Solution Approach

As the RSM problem can be framed as an RL problem, we can now combine the
GNN approach with RL. Traditional RL algorithms are often not scalable when
the state space (the number of all possible states) grows. The approximative and
generalizing power of neural networks can be used then to build RL algorithms
that scale much better with increasing state spaces. This is called DRL. Several
algorithms exist here, e.g. Policy Gradient methods (Sutton and Barto (2018a))
such as Proximal Policy Optimization (PPO) (Schulman, Wolski, et al. (2017)) or
Trust Region Policy Optimization (Schulman, Levine, et al. (2017)) but also Deep
Q-Learning (DQN) (Mnih, Kavukcuoglu, Silver, Rusu, et al. (2015)) and variants
(Hasselt, Guez, and Silver (2015) and Z. Wang et al. (2016)) 6. As GNNs are neural
networks we can integrate them into DRL and use them as the core model with
which the RL algorithm works with. Concretely, the suggested solution involves
employing a GNN based PPO and a GNN based DQN.
To start off, the core components of every RL problem are assigned to the RSM
problem:

• Environment E: The environment will be RSM system, modelled by a sim-
ulation SRSM that mimics the real system dynamics

• State st: The state of the environment is the graph instance Gt at time step
t as explained in section 5.3.1

• Action at: The actions are given by the relocation tuple (i, j) as described
in section 5.3.1 . So the action space consists of two actions.

5A more detailed explanation of these algorithms can be found in the appendix D.1
6For further insights and a detailed explanation of the relevant algorithms, see the appendix
D.2 and D.3



• Reward rt: The reward displays the negative weighted sum of aggregated la-
tency F (Gt+1) and reconfiguration costsK(dt−1, dt), such that rt = −(λlatF (Gt+1)+
λreK(dt−1, dt)). This aligns with the theoretical foundation presented in sec-
tion 5.3.2

All of that data is retrieved by interacting with the simulation SRSM
7.

As PPO and DQN require different GNN architectures, the last part of the section
will give a short intuition of how the models are built. In both cases, a GAT
type GNN with three layers is applied to the state st = Gt, such that we receive
node embeddings H3

t = GAT(Gt). Only three layers are used, because the largest
relevant neighborhood for this problem is the 2- and 3-hop neighborhood, as every
client has an edge with every data center and every data center has an edge with
every other data center. PPO requires an actor that outputs action distributions
πi(at | st) and πj(at | st) for the relocation tuple (i, j) and a critic that outputs
a value estimation vπ(st) for the current state st. DQN requires an action-value
output qπi (st, at) and qπj (st, at) that assigns action-values for each remove-location-
action i and add-location-action j respectively. More precisely:

1. GNN for PPO: A predictor Ci
actor : R|V |×d(3) 7→ R|L| is applied to assign

each location node a score lv
8. These scores are then to used receive the

remove-location action distribution πi(at | st). Let u ∼ πi(at | st) be the
selected node to be removed. Inspired by Guo, Xu, and Yaohui Jin (2023)
, we opt to use the node embedding H3

t[u] = h3
u of the node u as additional

information for the second action, the add-location-action j.
Hence, the second predictor Cj

actor : R|V |×d(3) × R1×d(3) 7→ R|L| now gets two
inputs, H3 and h3

u, returning scores for the action j which will be used for
the action distribution πj(at | st).
Finally, the critic GNN simply uses a pooling operation Pcritic : R|V |×d(3) 7→
Rd(3) combined with a predictor Ccritic : Rd(3) 7→ R to output the state-values
as vπ(st) = Ccritic(Pcritic(H

3)).

2. GNN for DQN: Here, a predictor CDQN : R|V |×d(3) 7→ R2×|L| is used that
outputs the action values qπi (st, at) and qπj (st, at) for each data center loca-
tion.

Both algorithms make then use of the corresponding model architecture.

7For a detailed description about the inner workings of the simulation, see the appendix C
8Technically speaking, the output domain is R|Dt| as the currently active data centers. How-
ever, this is a technical detail which is managed by action masking. It can be found in the
corresponding model class in the repository

https://github.com/Coluding/thesis-rl/blob/master/src/model/gnn.py


6. Experiments, Training and
Results

6.1. Training Process

6.1.1. Supervised Experimental Training

To ensure that the proposed GNN model architecture effectively understood and
processed the graph structure, a supervised pre-task was constructed. This pre-
task involved creating a dataset of input-output pairs (X, Y ), where the input data
X consisted of graph instances G1, G2, . . . , Gn, and the corresponding target data
Y represented the aggregated latency F (Gt) of the system.
The objective was to train the GNN using the Ccritic predictor and Pcritic to
minimize the mean squared error (MSE) between the actual aggregated latency
yt = F (Gt) and the predicted aggregated latency ŷt = Ccritic(Pcritic(GAT(Gt))).
Mathematically, this is expressed as:

minimize
θ

n∑
t=1

(ŷt − yt)
2 (35)

where θ represents the combined parameters of Ccritic, Pcritic, and the GAT GNN.
The experimental training was successful, as indicated by a decrease in the mean
squared error over time, as shown in Figure 6.1. This demonstrated that the model
architecture was generally capable of understanding and learning from graph data,
effectively processing the graph instances Gt.

6.1.2. Imitation Experimental Training

The supervised experimental training demonstrated the model’s ability to under-
stand graph data at the graph level, predicting aggregated system latency. How-
ever, for the RSM problem, an understanding at the node level is also required, as
the goal is to output relocation tuples for each node. Therefore, a second experi-
mental training was conducted. A dataset (X, Y ) was constructed, with input data
X consisting of graph instances Gt and target data Y consisting of optimal relo-
cation tuples (i, j)t for 500 graph instances. This was achieved using a brute-force
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Figure 6.1.: Development of the loss, i.e. the mean squared error, of the supervised
training to predict the aggregated latency of the whole graph instance,
i.e. the simulated system.



approach, evaluating all possible relocation combinations for each graph instance
Gt and selecting the one that minimized the sum of latency F (Gt) and relocation
costs K(dt−1, dt). As discussed in section 5.3.1 , this method is not scalable due
to the combinatorial complexity and NP-hardness of the LA problem. Therefore,
this approach was only used for experimental validation of the node-level under-
standing of the GAT-GNN model.
Using the DQN predictor CDQN , we obtain an output Ot = CDQN(GAT(Gt))
of shape (2 × |L|). By selecting the two indices (nodes) with the highest val-
ues along the first dimension, we derive the predicted optimal relocation tuple
(̂i, ĵ)t = argmax(Ot). This prediction can be quantified using categorical loss
functions such as cross-entropy:

minimize
θ

−
n∑

t=1

 |L|∑
l=1

itl log
(
îtl

)
+ jtl log

(
ĵtl

) (36)

where i and j are the respective elements of the target and predicted relocation
tuples. θ represents the combined parameters of Ccritic and the GAT GNN. The
training was successful, with the loss decreasing, though it exhibited volatility at
times, suggesting that the model’s ability to make graph-level predictions is some-
what better. The behavior of the loss is depicted in Figure 6.2. This method is
referred to as Imitation Learning (Zare et al. (2023)).

Both experimental validation approaches demonstrated that the GAT-GNN is ca-
pable of processing graph-structured data. The next section describes the actual
RL training process.

6.1.3. RL Training: PPO and DQN

The general setting of the system involved reward rt with weights λlat = 1 and
λre = 0.5. The general setting of the system involved 15 possible data center
locations, i.e. |L| = 15 and 50 client locations, i.e. |Ct| = 50 for each step t.
Latencies between clients d(u,v)t were retrieved through the simulation SRSM or
the environment E. Three active data centers should be maintained, i.e. |Dt| = 3.
The initial phase involved training a PPO agent. The training was accelerated
using a NVIDIA Titan V GPU. The methodology comprised an initial training
phase of approximately 50,000 simulation steps, using a specific set of PPO pa-
rameters, to observe detectable learning behavior. If successful, this parameter set
was retained for further training of an additional 250,000 steps. This incremental
approach was adopted due to the eight-hour time requirement to simulate 50,000
steps, making it impractical to train with every parameter set for the full 300,000
steps. 300,000 steps took around two days and were therefore a reasonable amount



Figure 6.2.: Development of the loss, i.e. the cross-entropy loss, of the imitation
training to predict the optimal relocation tuples. It is steadily de-
creasing emphasizing the general understanding of the model

of steps to observe the learning process while being able to also try new parameter
settings. This strategy represents a compromise between identifying the optimal
long-term parameter set and ensuring detectable learning behavior, even though
it may result in some parameter settings being overlooked. Key adjustable param-
eters for PPO and DQN can be found in the appendix D.3.

Both algorithms were trained using multiple parameter sets to determine the most
effective configurations. After completing the training of various settings, the set-
ting that provided the best average reward during training was chosen. 1

6.2. Training Results

6.2.1. PPO Results

Several parameter settings were tested for both algorithms. The first key finding
was that the DQN algorithm consistently outperformed the PPO algorithm. The
core principle of policy gradient methods like PPO is to increase the probability

1A detailed overview of the algorithms and training process can be found in theappendix D..



of favorable actions towards 1 and decrease the probability of unfavorable actions
towards 0. Although the probabilities did change during training, their devel-
opment did not align with expectations. The probabilities were not significantly
shifted towards obviously favorable actions, which is typically observed in other
PPO applications.
For instance, in a system configuration with three active data centers, an equally
distributed remove-location-action distribution πi(at | st) would have a probabil-
ity of 1

3
for each location. After approximately 300,000 steps, the probabilities for

more favorable actions were around 2
5
, indicating a slow learning process. However,

the expected clear distinction in probabilities was not observed. As a result, the
sampling of actions during evaluation phases often returned unfavorable actions,
leading to poor evaluation results and suboptimal rewards.
Consequently, the PPO training was not deepened and DQN was carried out.

6.2.2. DQN Results

In general, it can be stated that the overall results of both algorithms, especially
the PPO, were not as good as expected. The theoretical foundations and practi-
cal reasons for applying RL to this problem combined with GNNs appeared more
promising than the actual experimental outcomes. Nevertheless, an overall learn-
ing pattern could be observed, as depicted in Figure 6.1 using DQN. The average
evaluation reward increased consistently over the first 200,000 steps. After this
period, a saturation effect occurred, where the average reward initially decreased
slightly and then remained constant for the remainder of the training (approxi-
mately 300,000 steps).
Analyzing the training development and delving deeper into what the model
learned, it becomes evident that the rules of the RSM system were learned rel-
atively quickly. Since K(dt−1, dt) also captures penalties for undesirable actions
that define soft game rules (e.g., selecting a passive data center as active if it
was not previously passive), the model was able to avoid these highly negative
reward-yielding actions. This demonstrates the model’s general capability to learn
beneficial behavior within the environment, as supported by the reward develop-
ment shown in Figure 6.1. Some parameter settings did not learn the system’s
soft rules within the first 50,000 steps, resulting in decreased or highly volatile
rewards. It is also worth noting that the learned reconfiguration outperformed
random search heuristics with the intuition to select a new data center randomly.
This should be no surprise since the randomized searches do not pay attention to
any high-penalty rule breaks. Also, they do not discover any kind of relocation
strategy which the currently best model does. Thus, although not being good
enough out of absolute perspective, the model showed competence in being supe-
rior to classic, randomized heuristics.



The learning of optimal relocation patterns also took place, but the suggested re-
locations did not improve overall latency to the extent necessary to benefit the
system in a way that it could be applied to the real-world existing system. How-
ever, given the detectable general learning pattern, achieving better results may
be feasible with different parameter settings and more training time.

6.2.3. Interpretation of Results

One of the main goals of this thesis was demonstrated: the GNN-based RL ap-
proach is generally working. The model can learn and adjust its policy to improve
the reward over time. While the magnitude of latency improvement was not fully
convincing, the general learning tendency highlights the potential of this approach
with more optimized parameter settings.

Several factors may have contributed to the saturation of the learning process
and the smaller-than-expected reward improvement.
First, the core of the learning process is the simulation SRSM . This simulation
should accurately reflect the dynamics of the real-world RSM system. It is pos-
sible that the simulation is not realistic enough and fails to capture the complex
dynamics of the real system accurately. This can lead to distorted and non-unique
states and rewards, hindering the model’s efficient learning process. Specifically,
the reward rt, which serves as the only feedback signal for the model, may be too
smooth. This means the rewards for good and bad actions do not differ sufficiently
to force policy adjustments. A possible solution would be to rebuild SRSM with
more nuanced latency and cost feedback.
Second, the node input features XV t might be too few or lack sufficient expressive
power. Currently, the input features include the number of requests sent per client,
the type of location, and the current time step. It could be beneficial to store an
encoded history of the node’s feature development over the past n time steps. This
would inform the node not only about the spatial data in its neighborhood but also
about the temporal-spatial data of the past time steps. This can be achieved using
Spatio-Temporal GNNs (Verdone, Scardapane, and Panella 2024) that model the
time dimension over instances of dynamic graphs.
Third, the training time might have been too short. As noted earlier, time con-
straints were significant as the goal was to experiment with different parameter
settings to find one that showed some reward improvement. The training time of
around two days for 300,000 steps limited the number of parameter combinations
tested over a large number of training steps. Consequently, no further training
beyond 300,000 steps was conducted, possibly missing out on beneficial relocation
strategies that might have been discovered later. This limitation could be over-
come in the future with more powerful hardware resources to speed up training.



Figure 6.3.: Average evaluation reward of the training of the best model

Lastly, the update steps may have been too infrequent. In the current setup, one
update step corresponds to one full hour of the day. Given the periodic trend
in client movement over a day, it is possible that favorable relocations were not
proposed by the model because client locations changed too quickly. For example,
performing an update step every 30 minutes could allow clients to remain longer in
the current region, potentially emphasizing the benefit of relocating data centers
to that region. The low frequency of hourly update steps sometimes pushed the
model toward a local optimum, where it merely rotated active data centers within
one region. With five possible locations in Asia for the three active data centers,
the model focused on a strategy of switching locations within Asia. Although it is
generally better to shift active data centers with client movement, keeping them
in one region until clients move back (which occurs more frequently with hourly
updates) was a sufficiently good policy to avoid opting for other strategies if they
were not discovered. Consequently, this behavior occurred more frequently with
rarer relocation updates. This suboptimal strategy selection likely contributed
to the saturation effect. More frequent relocations and the injection of expert
knowledge could mitigate this. Expert knowledge involves a dataset of human-
crafted optimal actions in certain states that help the model escape local optima
(Sonabend-W et al. (2020)).



7. Conclusion

This thesis aimed to address the optimization of LA problems through a hybrid
approach combining GNNs and DRL. The focus was on solving DSFLP within
the context of RSM in global networks. By reframing the RSM problem as an
RL problem, we leveraged the capabilities of GNNs to handle graph-structured
data and the adaptability of RL to learn optimal policies dynamically. The key
contribution and findings were:

1. Theoretical Foundation: The RSM problem was suggested as an instance
of the broad field of LA problems, especially DSFLPs. Furthermore, a theo-
retical framework by linking DSFLPs with RL was established, demonstrat-
ing how the state-value equations of DSFLP can be reframed as Bellman
equations in RL. This connection provided a solid foundation for applying
RL algorithms to the RSM problem. This also demonstrates that dynamic
LA problems, if formulated in a similar way to the DSFLP, can be framed
as a RL problem and therefore making optimal policies of the RL approach
also optimal policies for dynamic LA problems.

2. Graph Neural Network Architecture: A GNN architecture based on
Graph Attention Networks to process the dynamic graph structures inherent
in RSM systems was proposed. The GNN was designed to output relocation
tuples, capturing the nuanced dependencies between nodes (data centers and
clients) in the graph.

3. Reinforcement Learning Integration: Two RL algorithms, PPO and
DQN, were integrated with the GNN model. These algorithms were adapted
to handle the specific requirements of the RSM problem, such as quick
decision-making and handling large state spaces.

4. Simulation Environment: A comprehensive simulation environment was
developed to mimic the real-world dynamics of an RSM system. This simu-
lation facilitated the training and evaluation of the proposed RL algorithms,
providing a platform to test various configurations and scenarios.

5. Experimental Validation: Experimental training validated the model’s
ability to understand and process graph data at both the graph and node
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levels. The model demonstrated effective prediction of system latency and
optimal relocation decisions, showcasing its potential to optimize RSM con-
figurations dynamically.

6. Validation of GNN-based RL: The core idea of using a GNN-based RL
approach to solve the RSM problem, framed as LA problem, was validated.
While the model showed promise, the learning process did not fully meet
expectations. Nonetheless, the solution approach demonstrated that the RL
model could learn soft rules of the RSM system that are punished with high
negative rewards as well as some local optimum strategies. This undermines
the general and promising capability to use GNN-based RL approaches for
the LA problem.

These findings pave the way for future research. The GNN-based RL approach
to optimize LA problems shows considerable promise. Future research could fo-
cus on improving the learning process and overcoming local optima in relocation
strategies. This can be achieved through new model architectures, enhanced simu-
lations, improved RL algorithms, or more powerful hardware resources. A different
concrete problem setting, instead of the RSM, could be also a promising future re-
search option. The main takeaway is that the proposed approach has the potential
to challenge existing heuristics, despite not being fully mature yet.



A. Literature Review Table

Table A.1.: Literature Review Table
Author(s) Year Title Journal/Book1 Key Findings

Zeinab
Azarmand
and Ensiyeh
Neishabouri

2009 Location Allocation
Problem

Facility
Location:
Concepts,
Models,
Algorithms and
Case Studies
(Book)

This paper addresses the
location-allocation problem,
which aims to minimize
transportation costs by
optimally placing facilities. It
reviews numerous algorithms
developed since 1963, including
branch-and-bound, simulated
annealing, and variable
neighborhood search,
particularly for large-scale
problems.

Derya Celik
Turkoglu and
Mujde Erol
Genevois

2020 A comparative survey
of service facility
location problems

Annals of
Operations
Research
(Journal)

This paper surveys 90 papers on
service facility location problems
since 2000, presenting a
taxonomy based on 19
characteristics to aid researchers
and practitioners, categorizing
problems by application fields
and highlighting future research
directions

Continued on next page
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Table A.1 – continued from previous page
Author(s) Year Title Journal/Book Key Findings
Mark S. Daskin
and Kayse Lee
Maass

2015 The p-Median
Problem

Location
Science (Book)

The p-median problem, central
to discrete location modeling, is
NP-hard on general graphs but
solvable in polynomial time on a
tree, with various algorithms and
metaheuristics, including tabu
search and genetic algorithms,
applied for solutions, and
multi-objective extensions
discussed.

Gilbert Laporte,
Stefan Nickel,
and Francisco
Saldanha da
Gama

2015 Introduction to
Location Science

Location
Science (Book)

The book introduces modern
Location Science, tracing its
roots, identifying linked
disciplines, providing successful
application examples, detailing
the volume’s purpose and
structure, and offering
suggestions for organizing
location courses for various
audiences.

C.S. ReVelle,
H.A. Eiselt, and
M.S. Daskin

2008 A bibliography for
some fundamental
problem categories in
discrete location
science

European
Journal of
Operational
Research
(Journal)

This paper presents a taxonomy
of facility location modeling,
providing an annotated
bibliography of recent papers on
median and plant location
models, as well as center and
covering models, and concludes
with a summary and outlook

Continued on next page
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Author(s) Year Title Journal/Book Key Findings
Charles S. ReV-
elle and Ralph
W. Swain

1970 Central Facilities
Location

Geographical
Analysis
(Journal)

This paper addresses the
problem of central facilities
location, focusing on minimizing
the average distance or time
traveled per person by
designating a specified number of
communities as centers, and
discusses various constraints,
optimization methods, and
practical applications such as
clinics and warehouses

Lev Kazakovt-
sev

2013 Random Search
Algorithm for the
p-Median Problem

Informatica
(Journal)

This article introduces the
p-Median problem referring to
the original problem Weber
solves in the early 20th century

Michele Barbato
et al.

2023 Node based compact
formulations for the
Hamiltonian
p-median problem

Networks
(Journal)

Provides a more specified
formulation of the p-Median
problem

Pasquale Avella,
Antonio Sas-
sano, and Igor
Vasil’ev

2007 Computational study
of large-scale
p-Median problems

Math. Program.
(Journal)

Provides a more specified
formulation of the p-Median
problem

Alfred Weber 1922 Ueber den standort
der industrien

Ueber den
Standort der
Industrien
(Book)

Weber introduces in this book
the foundational single
warehouse problem which serves
as a baseline for further
development in the field of LA
problems

Continued on next page
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Author(s) Year Title Journal/Book Key Findings
Frank Plastria 2001 Static competitive

facility location: An
overview of
optimisation
approaches

European
Journal of
Operational
Research
(Journal)

This paper provides an overview
of research, models, and
literature on optimization
approaches for the problem of
optimally locating one or more
new facilities in environments
where competing facilities
already exist. It serves as
reference literature for LA
problems in continuous spaces.

Reza Zanji-
rani Farahani,
Maryam Abe-
dian, and Sara
Sharahi

2009 Dynamic Facility
Location Problem

Facility
Location:
Concepts,
Models,
Algorithms and
Case Studies
(Book)

This book discusses facility
location as a strategic
management decision, typically
based on current parameters
such as population,
infrastructure, and service
requirements. It reviews key
models in location theory,
including single/multi-facility
location, covering, P-median,
and P-center problems, noting
the challenges in solving these
problems and the focus on static
and deterministic formulations
that often fail to capture the
complexities of real-world
location issues.

Continued on next page
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Author(s) Year Title Journal/Book Key Findings
Andreas Klose
and Andreas
Drexl

2005 Facility location
models for
distribution system
design

European
Journal of
Operational
Research
(Journal)

This article addresses the
strategic importance of
distribution system design for
companies, focusing on the core
topics of facility location and
customer allocation. It reviews
various model formulations and
solution algorithms, highlighting
their fundamental assumptions,
mathematical complexity, and
computational performance, with
a summary of continuous
location models, network
location models, mixed-integer
programming models, and their
applications.

Susan Hesse
Owen and Mark
S. Daskin

1998 Strategic facility
location: A review

European
Journal of
Operational
Research
(Journal)

This paper reviews literature on
the strategic nature of facility
location decisions, focusing on
stochastic and dynamic aspects.
It discusses how model
formulations and solution
approaches address uncertainties
in future events, timing issues,
and scenario planning, with
applications across various
industries. The review highlights
the importance of selecting
robust facility sites that remain
profitable over time despite
changes in environmental
factors, population shifts, and
market trends.

Continued on next page
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Author(s) Year Title Journal/Book Key Findings
Elena Fernandez
and Mercedes
Landete

2015 Fixed-Charge Facility
Location Problems

Location
Science (Book)

This chapter addresses
Fixed-Charge Facility Location
Problems, a fundamental topic
in Location Science, involving
decisions on where to establish
facilities and how to allocate
user demand to these facilities.
It provides an overview of key
elements in modeling and solving
these problems, including
modeling hypotheses,
formulation characteristics and
their interrelations, domain
properties, and suitable solution
techniques, highlighting potential
applications in various contexts.

O. Kariv and
S. L. Hakimi

1979 An Algorithmic
Approach to Network
Location Problems.
II: The p-Medians

SIAM Journal
on Applied
Mathematics
(Journal)

This chapter demonstrates that
the problem of finding a
p-median in a network is
NP-hard, even for simple
structures such as planar graphs
with a maximum vertex degree
of 3

Nenad Mladen-
ovic et al.

2007 The p-median
problem: A survey of
metaheuristic
approaches

European
Journal of
Operational
Research
(Journal)

This paper surveys the p-median
problem, a fundamental model in
discrete location theory classified
as NP-hard, and examines
advances in solving it using
recent procedures based on
metaheuristic rules

Continued on next page
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Author(s) Year Title Journal/Book Key Findings
W. Michiels,
E. H. L. Aarts,
and J. Korst

2018 Theory of Local
Search

Handbook of
Heuristics
(Book)

This chapter discusses local
search as a widely used heuristic
method for solving combinatorial
optimization problems,
particularly NP-hard problems,
by trading off solution quality
against computation time, with
well-known approaches including
iterative improvement, simulated
annealing, and tabu search.

Michael O. Ball 2011 Heuristics based on
mathematical
programming

Surveys in
Operations
Research and
Management
Science
(Journal)

This paper surveys heuristics
using mathematical
programming, covering methods
that decompose problems into
subproblems, improvement
algorithms for better feasible
solutions, branch-and-bound for
approximations, and solving
relaxations to find good solutions

R.A. Whitaker 1983 A Fast Algorithm For
The Greedy
Interchange For
Large-Scale
Clustering And
Median Location
Problems

INFOR:
Information
Systems and
Operational
Research
(Journal)

This paper serves as reference for
greedy search algorithms

S. Salhi and
R.A. Atkinson

1995 Subdrop: A modified
drop heuristic for
location problems

Location
Science
(Journal)

This paper serves as reference for
stingy search algorithms

S. Salhi 1997 A Perturbation
Heuristic for a Class
of Location Problems

The Journal of
the Operational
Research
Society
(Journal)

This paper serves as reference for
constructive heuristics

Continued on next page
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F. E. Maranzana 1964 On the Location of

Supply Points to
Minimize Transport
Costs

OR (Journal) This paper serves as reference for
alternate heuristics

Michelle Hribar
and Mark S.
Daskin

1997 A dynamic
programming
heuristic for the
P-median problem

European
Journal of
Operational
Research
(Journal)

This paper introduces dynamic
programming as a possible
solution approach for the
p-median problem

J.E. Beasley 1993 Lagrangean heuristics
for location problems

European
Journal of
Operational
Research
(Journal)

This paper introduces a demand
partitioning method that reduces
aggregation errors in p-median
problems, tested with Costa Rica
data, and outperforms existing
methods while requiring less
computational effort than using
unaggregated data.

Stefan Voß 2008 Metaheuristics Encyclopedia of
Optimization
(Book)

This chapter serves as
orientation for metaheuristics. It
introduces the concepts and
shows how it can applied to
existing problems

Osman Alp, Er-
han Erkut, and
Zvi Drezner

2003 An Efficient Genetic
Algorithm for the
p-Median Problem

Ann. Oper.
Res. (Journal)

This paper demonstrates how a
genetic search algorithms can be
used to solve facility location
problems

Enrique
Dominguez
Merino and José
Muñoz Perez

2002 An Efficient Neural
Network Algorithm
for the p-Median
Problem

Advances in
Artificial
Intelligence —
IBERAMIA
2002 (Book)

This paper presents a neural
network model and new
formulation for the p-median
problem, demonstrating its
effectiveness for small-scale
problems (less than 100 points)
and showing that it can produce
good solutions for large-scale
problems in a few seconds,
outperforming conventional
heuristic methods

Continued on next page
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Kailash Lachh-
wani

2020 Application of neural
network models for
mathematical
programming
problems: A state of
art review

Arch. Comput.
Methods Eng.
(Journal)

This article introduces the
concept of neural networks for
mathematical programming
problems. It serves as a
theoretical foundation and
orientation for concepts related
to neural networks.

Laura I. Burke
and James P. Ig-
nizio

1992 Neural networks and
operations research:
An overview

Computers and
Operations
Research
(Journal)

This paper introduces the use of
neural networks as an alternative
method for solving common OR
problems such as resource
allocation, classification,
prediction/estimation, and
clustering, highlighting its
potential advantages, including
parallel processing capabilities,
and emphasizing its relevance for
OR analysts

Kurt Hornik,
Maxwell Stinch-
combe, and
Halbert White

1989 Multilayer
feedforward networks
are universal
approximators

Neural
Networks
(Journal)

This paper rigorously establishes
that standard multilayer
feedforward networks with a
single hidden layer using
arbitrary squashing functions are
universal function
approximators, capable of
approximating any Borel
measurable function between
finite dimensional spaces to any
desired accuracy.

Continued on next page
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Chenguang
Wang et al.

2023 Solving uncapacitated
P-Median problem
with reinforcement
learning assisted by
graph attention
networks

Appl. Intell.
(Journal)

This paper introduces the first
RL-based method using
Multi-Talking-Heads Graph
Attention Networks to solve the
uncapacitated P-Median
Problem, demonstrating superior
performance in solution quality
and time efficiency compared to
traditional methods, and
highlighting the impact of data
distribution differences on final
performance.

Shiqing Liu,
Xueming Yan,
and Yaochu Jin

2023 End-to-End Pareto
Set Prediction
withÂ Graph Neural
Networks
forÂ Multi-objective
Facility Location

Evolutionary
Multi-Criterion
Optimization
(Book)

This paper addresses the
multi-objective facility location
problem (MO-FLP), aiming to
minimize cost and maximize
system reliability. It introduces a
learning-based approach using
graph neural networks to predict
the distribution probability of
the Pareto set, allowing for
efficient sampling of
non-dominated solutions.
Experimental results
demonstrate that this method
matches the performance of
traditional multi-objective
evolutionary algorithms while
significantly reducing
computational costs.

Continued on next page
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Enrique
Dominguez
and Jose Munoz

2008 Computers and
Operations Research
(Journal)

A neural model
for the p-median
problem

This paper proposes a
competitive recurrent neural
network for solving the p-median
problem, incorporating
constraints into the neural
architecture to ensure feasible
solutions without tuning
parameters, and demonstrating
its efficiency and effectiveness
compared to traditional
heuristics, with potential
integration into GIS software for
real-time spatial query support.

Ashish Ku-
mar Shakya,
Gopinatha Pil-
lai, and Sohom
Chakrabarty

2023 Reinforcement
learning algorithms:
A brief survey

Expert Systems
with
Applications
(Journal)

This review provides an overview
of Reinforcement Learning (RL),
a machine learning technique for
sequential decision-making in
complex problems, highlighting
its trial-and-error inspiration and
capability to autonomously learn
optimal policies. It covers
fundamental model-free RL
algorithms, DRL algorithms for
complex tasks, and briefly
discusses model-based and
multi-agent RL approaches,
concluding with promising
research directions in the field.

Manuel Sch-
neckenreither
and Stefan
Haeussler

2019 Reinforcement
Learning Methods for
Operations Research
Applications: The
Order Release
Problem

Machine
Learning,
Optimization,
and Data
Science (Book)

This paper proposes a
DRL-based adaptive order
release mechanism for
manufacturing, optimizing
release times to improve flow
times and performance. A
two-stage flow-shop simulation
shows this approach outperforms
traditional methods.

Continued on next page
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Ching Pui Wan,
Tung Li, and Ja-
son Min Wang

2023 RLOR: A Flexible
Framework of Deep
Reinforcement
Learning for
Operation Research

Preprint
(Journal)

This paper introduces RLOR, a
flexible framework for DRL in
operations research. By
re-implementing and training the
Attention Model with Proximal
Policy Optimization (PPO), it
achieves an 8x speedup in
solving vehicle routing problems,
integrating recent advances in
RL

Lina Yu et al. 2021 Reinforcement
learning approach for
resource allocation in
humanitarian logistics

Expert Systems
with
Applications
(Journal)

This paper proposes a
Q-learning algorithm for disaster
relief resource allocation,
optimizing efficiency,
effectiveness, and equity. The
algorithm outperforms dynamic
programming in efficiency and
heuristic methods in accuracy,
providing near-optimal solutions
by adjusting training episode
values.

Matthias Klar,
Moritz Glatt,
and Jan C.
Aurich

2021 An implementation of
a reinforcement
learning based
algorithm for factory
layout planning

Manufacturing
Letters
(Journal)

This paper presents a RL
approach for automated factory
layout planning using Double
Deep Q Learning. The algorithm
optimizes layouts based on
transportation time, solving an
allocation problem with four
functional units in 8,000 training
episodes and demonstrating
promising potential for broader
applications.

Continued on next page
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Yimo Yan et al. 2022 Reinforcement

learning for logistics
and supply chain
management:
Methodologies, state
of the art, and future
opportunities

Transportation
Research Part
E: Logistics and
Transportation
Review
(Journal)

This paper reviews RL
applications in logistics and
supply chain management,
highlighting Q-learning as the
most popular method and
increased focus on urban
logistics due to E-commerce. It
also discusses current challenges
and potential future research
directions.

Qi Wang and
Chunlei Tang

2021 Deep reinforcement
learning for
transportation
network
combinatorial
optimization: A
survey

Knowledge-
Based Systems
(Journal)

This paper reviews DRL for
NP-hard combinatorial
optimization problems like the
traveling salesman and vehicle
routing problems. It explores
state-of-the-art techniques,
compares algorithm
performance, and identifies
challenges and future research
directions in this field.

Kai Arulku-
maran et al.

2017 Deep Reinforcement
Learning: A Brief
Survey

IEEE Signal
Processing
Magazine
(Journal)

This survey explores DRL ,
covering key algorithms like
DQN, TRPO, and asynchronous
advantage actor critic, and its
applications in video games and
robotics. It highlights DRL’s
potential to advance AI and
concludes with current research
areas.

Hyung-Chan
An, Ashkan
Norouzi-Fard,
and Ola Svens-
son

2017 Dynamic Facility
Location via
Exponential Clocks

ACM Trans.
Algorithms
(Journal)

This article introduces the
dynamic deterministic facility
location problem. It serves as an
orientation for the mathematical
formulation of the problem.

Continued on next page
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Richard E.
Rosenthal, John
A. White, and
Donovan Young

1978 Stochastic Dynamic
Location Analysis

Management
Science
(Journal)

This research introduces
stochastic decision processes into
location analysis, using an
infinite-horizon Markov decision
chain to minimize relocation and
interaction costs for dynamic
facility relocation. It also reports
methods for solving large
problems. It serves as the
foundation for dynamic
location-allocation problems.

Reza Zanji-
rani Farahani,
Maryam Abe-
dian, and Sara
Sharahi

2009 Dynamic Facility
Location Problem

Facility
Location:
Concepts,
Models,
Algorithms and
Case Studies
(Book)

This chapter discusses facility
location as a strategic
management decision, often
based on current parameters like
population and infrastructure. It
reviews research on various
models, including
single/multi-facility location,
covering, P-median, and
P-center problems. While much
work has focused on static and
deterministic formulations, these
do not fully capture the
complexities and dynamic nature
of real-world location problems



Category Heuristic Literature found

Traditional
Classic Heuris-
tics

Nenad Mladenovic et al. (2007), Salhi
(1997), Whitaker (1983), Salhi and
Atkinson (1995), GalvÃ£o (1980),
Salhi (1997), Michiels, Aarts, and Ko-
rst (2018), Maranzana (1964), Hansen
and N. Mladenovic (1997), Ball (2011),
Hribar and M. S. Daskin (1997),
Beasley (1993), Bowerman, Calamai,
and Brent Hall (1999)

Metaheuristics Voß (2008), Nenad Mladenovic et al.
(2007), Salhi (2002)), Alp, Erkut, and
Drezner (2003), Rosing et al. (1998)

Modern
NN heuristics Burke and Ignizio (1992), Dominguez

Merino and Muñoz Perez (2002),
Dominguez and Munoz (2008), Matis
and Tarabek (2023), C. Wang et al.
(2023), Liu, X. Yan, and Yaochu Jin
(2023)

RL heuristics Schneckenreither and Haeussler (2019),
C. Wang et al. (2023), Guo, Xu, and
Yaohui Jin (2023), Yu et al. (2021),
Klar, Glatt, and Aurich (2021)

Table A.2.: Literature Review Table of literature found for each heuristic. Modern
heuristics are much more recent than traditional heuristics. Often in
the last four years (2020-2024). Especially RL heuristics are often also
still preprints and not reviewed



Figure A.1.: Distribution of publication years for the literature used in this thesis.
The majority of the literature is very recent, reflecting the emerging
nature of research on RL and GNN for LA problems. Since these
topics are relatively unexplored, particularly in the context of GNN-
based RL for LA problems, most relevant studies have been published
in the past few years. This distribution highlights the identified re-
search gap, indicating that literature in this area is either sparse, not
thoroughly reviewed, or newly emerging



B. Oversmoothing in Graph Neural
Networks

Oversmoothing in GNNs refers to the phenomenon where, as the depth of the
network increases, i.e. more layers and message-passing steps are added, the node
embeddings across the graph become increasingly similar (Keriven 2024).

In each layer of a GNN, the node embeddings h
(l)
v are updated by aggregating infor-

mation from their neighboring nodes. As more layers are added, this aggregation
process incorporates information from nodes that are progressively further away.
Eventually, a point is reached where every node’s embedding contains information
from almost every other node in the graph.
Beyond this point, further layers do not introduce new information but merely
aggregate what has already been combined in previous layers. As a result, the
embeddings of all nodes start to converge, becoming nearly identical. If the num-
ber of layers continues to increase indefinitely, the embeddings of all nodes will
eventually become the same. This can be formally expressed as:

lim
l→∞

h(l)
v = h(l)

u ∀u, v ∈ V

This convergence causes the GNN to lose its ability to distinguish between different
nodes, which is detrimental to its performance on tasks such as node- and graph-
level predictions. Hence, the GNN loses its expressive power (Sun (2022)). Figure
B.1 undermines this concept. Oversmoothing prevents GNNs from being too deep
which is contrary to other neural network architectures where it is usually the
deeper the network the better the performance. Therefore, the number of layers of
a GNN should be chosen carefully and with consideration of the size of the graph
or more specifically with consideration of the largest k-hop neighborhood for each
node.
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Figure B.1.: Oversmoothing of node embeddings. As l → ∞, the node embed-
dings converge, displayed by the same color structure at each node
embedding.



C. Replicated State Machine
Simulation Overview

One of the contributions of this thesis is the simulation of the RSM, implemented
using the standard OpenAI Gym interface (Brockman et al. (2016)). This simula-
tion is built around a base class, NetworkEnvironment, which manages the system
dynamics. The class simulates stochastic client movements based on time-of-day
distributions and models client request quantities using the Dirichlet distribution,
with weights adjusted according to the time of day (e.g., if the peak time in Asia is
around 06:00 am, and the current time is 08:00 pm, Asia will have a lower weight).
Each region has a peak time window from hour x1 to hour x2. To calculate the
weights w for these probabilistic properties, the following value is computed:

d = min

(∣∣∣∣x1 + x2

2
− t

∣∣∣∣ , ∣∣∣∣24 + x1 + x2

2
− t

∣∣∣∣)
w =

1

d

where t is the current hour. Given a set of clients C = {c1, c2, . . . , cn} and
regions R = {r1, r2, . . . , rk}, each with distinct peak times (representing possi-
ble regions where clients can move dynamically), we compute the weights W =
{w1, w2, . . . , wk} for each region. A new region for each client ci ∈ C is then
sampled based on these weights:

pi =
wi∑k
j=1wj

rci ∼ Categorical(p1, p2, . . . , pk)

This process determines a new region for each client at each timestep t. The
number of requests per client qci is then sampled using a Dirichlet distribution
with the weights W . Formally:

Q = {qc1 , qc2 , . . . , qcn} ∼ Dirichlet(W )
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This approach generates stochastic client dynamics, with varying requests through-
out the day. Additionally, the NetworkEnvironment class has access to an internal
map of latency ranges between data centers and clients, corresponding to the new
regions. These latencies are also sampled to construct a dynamic graph at time
t, reflecting the evolving client positions. By tracking changes in the data center
configuration, the class can compute the reward at each step t.

The NetworkEnvironment class thus simulates client movements, computes re-
wards, and returns the current graph instance at each timestep t.

The NetworkEnvGym class implements the gym interface, taking a NetworkEnvi-
ronment instance as an attribute. This provides access to all public methods of
the class, which are used to implement the step(action a), reset(), and render()
methods. These methods follow the OpenAI Gym guidelines, ensuring a seam-
less and modular interaction with the environment class, which simplifies applying
various algorithms to the problem using a consistent interface.

The TorchGraphObservationWrapper class converts the graph instance state at
each timestep t into a torch geometric data type, easily processed by PyTorch and
torch geometric neural networks. This wrapper class takes the NetworkEnvGym as
input and transforms the state output each time step(action a) is called, enabling
seamless integration with applications without the need for additional data type
transformations.

The connection between these three classes is illustrated in the following, highly
simplified, UML diagram. Figure B.1 displays the visualized environment at the
time of the day t = 1. This is done via the visualize() or the render() method by
the respective class. This contribution makes it possible to evaluate single actions
visually, improving understanding of the problem and consequences of actions. For
a more detailed overview of the class structure and the visualization process, refer
to the repository for this thesis.

https://github.com/Coluding/thesis-rl


Figure C.1.: Simulation visualization of the environment. Yellow client locations,
grey non-active locations, green active locations, and blue passive
locations. Edges are latencies between data centers and clients, but
also data centers and other data centers



Figure C.2.: Simplified UML diagram for the RSM simulation workflow

NetworkEnvironment

+ visualize(return fig=False)
+ step(action: Optional[Union[Tuple[str, str], Tu-
ple[Tuple[str, str], Tuple[str, str]]]] = None, trial: bool
= False): Tuple[nx.Graph, Tuple[float, float], bool]
+ reset(): Tuple[List[str], List[str]]

NetworkEnvGym

+ render(): Optional[np.ndarray]
+ step(action): Tuple
+ reset(): Tuple[nx.Graph, dict]

TorchGraphObservationWrapper

+ observation(observation: nx.Graph): torch geometric.data.Data



D. Foundations of Deep
Reinforcement Learning

D.1. Reinforcement Learning Foundation

To find optimal policies, the state transition probabilities are used as shown by
equations 10 and 11. This approach is then called Dynamic Programming (DP).
DP is an algorithm that computes the agent’s optimal policy when the complete
environment dynamics are known in the MDP framework. One important method
of DP is, that it makes use of the current state-value estimations for the next state
s′ to update the state-value estimation for the current state s. However, DP is im-
practical for large RL problems with continuous state and action spaces due to its
high computational demands and the need for complete environment knowledge.
Despite this, understanding DP is crucial for grasping other RL methods. DP
relies on Bellman equations and involves two main processes: policy evaluation,
which estimates state values for a given policy, and policy improvement (Shakya,
Pillai, and Chakrabarty (2023a)).

In practical situations, the state transition probabilities may not be accessible
for all possible states. Model-free RL methods bypass the need for a complete
environment model by using agent experience to directly learn the best possible
value functions or policies, often through a trial-and-error process. Model-free ap-
proaches typically require more data samples from agent-environment interactions
compared to model-based algorithms. However, even model-based algorithms of-
ten rely on model-free methods to help build the environment model. Model-
free RL methods are particularly advantageous for tackling complex problems
where constructing an accurate environment model is difficult. (Shakya, Pillai,
and Chakrabarty (2023a)). Common model-free approaches are:

• Monte Carlo Methods: Monte Carlo (MC) is a model-free approach where
an agent learns from experience data of episodic tasks, either in simulated
or real-world environments. It averages the returns from agent-environment
interactions to solve RL problems. A model may be used to simulate the
environment, but the policy and actions are not optimized based on this
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model. In MC, value and policy estimates are updated after each episode is
completed.

• Temporal Difference Learning: Temporal Difference (TD) learning is
a foundational concept in many key RL (RL) algorithms. It blends the
strengths of both DP and MC methods. Like MC, TD learning is a model-
free approach, meaning it doesn’t require a model of the environment. How-
ever, similar to DP, TD learning updates value estimates based on previous
estimates rather than relying solely on complete episodes. In a straightfor-
ward MC update, a whole episode with all the rewards is sampled to get a
full return trajectory. This return over all sampled steps is used as the tar-
get for the update. Whereas, TD learning, samples only a few steps, often
just one step such that it updates the target with value estimates to refine
predictions. Common TD algorithms are SARSA and Q-Learning

• Value Function Approximation: In methods like MC and TD, value
functions for all states are stored in memory. Since a state is defined by
a specific arrangement of observation features, even small changes in these
features create new states. For problems with large state and action spaces,
learning value functions for every possible state becomes impractical due to
the extensive memory and computational resources required.
To address this, Value Function Approximation (VFA) is used, introduc-
ing generalization to RL. VFA assigns similar value estimates to states with
similar features, allowing for an approximation of optimal policies and state
values. This approach significantly speeds up computation. Common meth-
ods for VFA include linear function approximators, neural networks, nearest
neighbor, and decision trees, with gradient-based optimization often used
to improve results. Linear function approximators and neural networks are
particularly effective choices for parameterized VFA, where value functions
are represented by parameterized functions with a weight vector.

Linear VFA requires carefully designed input features, which can be difficult to
select and often doesn’t perform well without the right features. It also faces chal-
lenges like correlations between training samples and non-stationary targets. A
better alternative is using deep neural networks (DNNs) for function approxima-
tion, which can directly use states without needing explicit feature specification
and can represent complex nonlinear functions.
The success of TD-Gammon in 1992, which combined ANNs and RL, marked a
significant advance. However, early RL methods were limited by computational
constraints. The rise of deep learning and DNNs has overcome these limitations,
enabling the automatic extraction of features from high-dimensional data and solv-
ing complex tasks like video game playing, making DRL a powerful tool for ad-



vanced problems (Shakya, Pillai, and Chakrabarty (2023a)).

D.2. Value Optimization Methods

In general, there are two DRL approaches. Value optimization and policy opti-
mization methods. In value optimization-based methods, an initial value function
is randomly assigned to each state. The value function is then iteratively updated
using learning data until the optimal value function is determined. The optimal
policy, which aligns with the optimal value function, is implicitly updated during
this process. This subsection explores various value optimization-based DRL ap-
proaches.
Very popular is the algorithm of Deep Q-Learning (DQN). Usually, Q-Learning
creates a state-action table for estimating the optimal policy, but this approach
struggles with large state and action spaces. DQN, introduced by Google Deep-
Mind in 2013 and improved in 2015, address this by using a DNN to approximate
Q-value functions. DQN gained significant attention in AI because it successfully
learned control policies directly from high-dimensional sensory inputs, like images,
using RL. In DQN, states are for example input as images, and the network outputs
estimated Q-values for all possible actions, enabling easy selection of the optimal
action. Refer to Figure C.1 for a visual depiction. Algorithm 1 shows how DQN
works. It makes use of experience replay memory, which is a storage mechanism
used in RL algorithms like DQN. It stores past experiences, which include the
state, action, reward, and next state tuples from the agent’s interactions with the
environment. The algorithm randomly samples these stored experiences during
training to break the correlation between consecutive data points, leading to more
stable and efficient learning (Mnih, Kavukcuoglu, Silver, Graves, et al. (2013)).

• Initialization: The algorithm starts by initializing the experience replay
memory D and the Q-value function approximator (a neural network) with
random weights θ.

• Episode Loop: The algorithm runs for multiple episodes, where each episode
consists of multiple steps or time steps.

• State Initialization: At the beginning of each episode, the initial state
{s1} is observed, and it is preprocessed into a feature representation ϕ1.

• Action Selection: At each time step t, an action at is selected based on
an ϵ-greedy policy. This means that with probability ϵ, a random action is



Figure D.1.: DQN depiction. State x is an image with an action space A of
three possible actions u1, u2, u3. The DQN learns estimated Q-Values
qπ(st, u) ∀u ∈ A for each action and state pair. The optimal policy
can then be easily selected by taking the maximum Q-Value (Shakya,
Pillai, and Chakrabarty (2023a)).

chosen, and with probability 1 − ϵ, the action that maximizes the Q-value
function is selected.

• Environment Interaction: The chosen action is executed in the environ-
ment, resulting in a reward rt and a new state st+1.

• State Transition Storage: The observed transition (ϕ(st), at, rt, ϕ(st+1))
is stored in the experience memory D.

• Experience Replay: A random minibatch of stored transitions is sampled
from the experience memory D to break correlation between consecutive
experiences and stabilize training.

• Q-Value Update: The target Q-value yj is calculated using the Bellman
equation, and the network’s weights are updated by performing a gradient
descent step to minimize the difference between the predicted Q-values and
the target Q-values.

• Iteration: Steps 4-8 are repeated for all steps in the episode, and the process
is iterated over all episodes.

This approach enables the algorithm to learn control policies directly from high-
dimensional input data, such as images but also graphs using GNNs, by approxi-
mating the optimal Q-values for each state-action pair using a deep neural network.



Algorithm 1 DQN Algorithm

1: Initialize: Experience memory D and Q-values with randomly selected weights
θ

2: for all episodes e = 1, 2, . . . do
3: Initialize state sequence {s1} and preprocessed state sequence ϕ1 = ϕ(s1)
4: for all steps t in each episode do
5: With probability ϵ select a random action at
6: Otherwise select at = argmaxaQ(ϕ(st), a; θ)
7: Take action at in the simulator and observe reward rt and image xt+1

8: Set st+1 = st, preprocess st+1 as ϕt+1

9: Store transition (ϕ(st), at, rt, ϕ(st+1)) in memory D
10: Sample random minibatch of transitions (ϕ(sj), aj, rj, ϕ(sj+1)) from

memory D
11: Set yj = rj + γmaxa′ Q(ϕ(sj+1), a

′; θ−)

12: Perform a gradient descent step on (yj −Q(ϕ(sj), aj; θ))
(2) with respect

to the weights θ
13: end for
14: end for

D.3. Policy Optimization Methods

The previously discussed optimization method uses value functions to estimate
the optimal policy. In contrast, policy optimization methods directly estimate the
optimal policy without relying on value functions. While value functions can still
help optimize policy parameters, they aren’t used for action selection. Policy-
based methods are particularly useful for continuous space problems, where value
function-based methods become computationally expensive. The most fundamen-
tal approach is the one of Policy Gradient (PG). PG methods optimize a policy by
parameterizing it as a function πθ(a|xk) that determines the probability of selecting
an action a at time step k given a state xk, with parameters θ. The policy parame-
ters are adjusted using a performance measure J(θ), such as the value of the start
state for episodic tasks or the average reward rate for continuous tasks. Unlike
value-based methods, where action selection probabilities can change drastically
with small updates, PG methods offer smoother and more stable convergence by
adjusting policy parameters directly.
In PG methods, the policy must be differentiable with respect to its parameters
θ, and typically employs stochastic policies to ensure adequate exploration, repre-
sented as πθ(a|x) > 0 for all a and x. The challenge in PG methods is that the
performance measure J(θ) depends on both the action selection probabilities and
the state distributions, which are influenced by the policy parameters. Since state



distributions are often unknown and environment-dependent, directly estimating
the gradient ∇θJ(θ) of the performance measure is difficult.
The policy gradient theorem provides an analytical expression for the gradient of
the performance measure with respect to the policy parameters, represented as:

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s)Qπθ(s, a)]

where Eπθ
denotes the expectation under the policy πθ, and Qπθ(s, a) is the action-

value function.
This expression does not require the gradient of state distributions, which makes it
feasible to compute. The REINFORCE algorithm, based on this theorem, updates
the policy parameters using the stochastic gradient ascent:

θ ← θ + α∇θJ(θ)

where α is the learning rate. By using this approach, the policy is iteratively
improved, leading to an optimal policy. The REINFORCE algorithm is shown in
Algorithm 2. It can be explained as follows:

• Initialization: The algorithm begins by initializing the policy parameters
θ. These parameters define the policy πθ(a|s) that will be optimized.

• Episode Generation: For each episode, a sequence of states {s0, s1, . . . , sK},
actions {a0, a1, . . . , aK−1}, and rewards {r1, r2, . . . , rK} is generated by fol-
lowing the current policy πθ.

• Return Calculation: For each step k in the episode, the algorithm calcu-
lates the return G, which is the cumulative discounted reward starting from
that step:

G←
K∑

t=k+1

γt−k−1rt

where γ is the discount factor.

• Policy Update: The policy parameters θ are updated using the policy
gradient:

θ ← θ + α∇θ log πθ(ak|sk)G

Here, α is the learning rate, and ∇θ log πθ(ak|sk) is the gradient of the log-
probability of the action taken, with respect to the policy parameters. This
update rule shifts the policy in the direction that increases the expected
return.



• Iteration: The process is repeated for all steps in each episode and over
multiple episodes to gradually improve the policy.

(Shakya, Pillai, and Chakrabarty (2023a), Sutton and Barto (2018d)).

Algorithm 2 REINFORCE: MC Policy Gradient Control for Episodic Task

Require: A differentiable parameterized policy πθ(a|s) and learning rate α
1: Initialize: Policy parameter θ
2: for all episodes do
3: Generate an episode {s0, a0, r1, . . . , sK−1, aK−1, rK} following policy πθ

4: for all steps in the episode k = 0, 1, . . . , K − 1 do
5: G←

∑K
t=k+1 γ

t−k−1rt ▷ Compute the return from step k
6: θ ← θ + α∇θ log πθ(ak|sk)G ▷ Update policy parameters
7: end for
8: end for

Unlike the REINFORCE algorithm, which can be slow due to its Monte Carlo
approach, actor-critic methods utilize TD learning, allowing for online and incre-
mental updates. The critic’s bootstrapped value estimates provide more stable
updates to the actor’s policy, making the method effective for continuous space
problems.
The actor-critic method improves over traditional policy gradient methods by us-
ing the critic’s value function as a baseline, which stabilizes and speeds up the
learning process. The updates follow:

θ ← θ + α∇θ log πθ(a|s)(r + γV π(s′)− V π(s))

where r + γV π(s′) − V π(s) is the TD error used to update both the actor and
critic (Shakya, Pillai, and Chakrabarty (2023a)). Algorithm 3 demonstrates the
actor-critic approach:

• Initialization: Initialize the policy parameters θ and value function param-
eters ω randomly. These parameters define the policy πθ(a|s) and the state
value function Vω(s), respectively. Set learning rates αθ and αω for updating
the policy and value function.

• Episode Loop: The algorithm runs over multiple episodes, each starting
with an initial state s0. For each step within an episode, the agent interacts
with the environment until a terminal state is reached.



• Action Selection: At each time step t, the agent selects an action at based
on the current policy πθ(a|st).

• Environment Interaction: The agent takes action at and observes the
reward rt+1 and the next state st+1.

• TD Error Calculation: Compute the Temporal Difference (TD) error δt
using:

δt ← rt+1 + γVω(st+1)− Vω(st)

where γ is the discount factor.

• Critic Update: Update the value function parameters ω using the TD
error:

ω ← ω + αωδt∇ωVω(st)

This step adjusts the critic to better estimate the value function based on
new information.

• Actor Update: Update the policy parameters θ using the TD error:

θ ← θ + αθδt∇θ log πθ(at|st)

This step adjusts the actor to improve the policy, making actions that lead
to higher rewards more likely.

• Iteration: Steps 3-7 are repeated for all steps within the episode, and the
process is iterated over multiple episodes to gradually improve the policy.

The one-step Actor-Critic algorithm effectively balances exploration (through the
actor) and exploitation (through the critic) by leveraging the critic’s value esti-
mates to guide policy updates. This approach results in more stable and efficient
learning in RL tasks. Numerous variations of the actor-critic framework have been
developed to enhance performance and efficiency. For instance, Proximal Policy
Optimization (Schulman, Wolski, et al. (2017)) and Trust Region Policy Optimiza-
tion (Schulman, Levine, et al. (2017)) are advanced actor-critic methods designed
to limit the divergence between successive policies, ensuring that updates do not
lead to drastically different policies, which could potentially derail learning. This
conservative update strategy helps maintain the policy on a favorable trajectory.

In summary, DRL is a powerful approach for handling large state and action spaces
by utilizing the expressive capabilities of deep neural networks. DRL has achieved
significant success in recent years, with many researchers proposing optimized
algorithms based on foundational RL principles but differing in implementation
details.



Algorithm 3 One-step Actor-Critic for Optimal Policy Estimation

Require: A differentiable parameterized policy πθ(a|s) and state value function
Vω(s), learning rates αθ and αω

1: Initialize: Policy parameters θ and value function parameters ω randomly
2: for all episodes do
3: Initialize the starting state s0 of the episode
4: for all steps in the episode until st is terminal do
5: Select action at ∼ πθ(a|st)
6: Take action at, observe reward rt+1 and next state st+1

7: δt ← rt+1 + γVω(st+1)− Vω(st) ▷ Compute the TD error
8: ω ← ω + αωδt∇ωVω(st) ▷ Update critic (value function)
9: θ ← θ + αθδt∇θ log πθ(at|st) ▷ Update actor (policy)

10: end for
11: end for

Figure D.2.: Actor-Critic approach workflow. The state and reward resulting from
the action are used to compute the TD error, which is then used
to update both the actor and critic networks (Shakya, Pillai, and
Chakrabarty (2023a)).



Both algorithms require specialized hyperparameter settings. Hyperparameters
are parameters that are not optimized by the model training but rather have to
be selected via trial and error or intuition. To sum the chapter up, an overview of
the important hyperparameters for both algorithms are given:

• Value optimization methods:

– ϵ: Probability of selecting random actions rather than the maximum
value action

– ϵdecay: Decay rate of ϵ for each episode that with more episodes trained
the probability of selecting random actions decreases

– ϵmin: Minimum value of epsilon

– γ: Discount factor gamma

– α or η: Learning rate of gradient ascent/descent update

– nbuffer: Size of experience replay memory

– nepochs: The number of iterations to train the model at each update
step

– b: The batch size. It is the amount of samples included in each gradient
update step sampled from the experience replay memory

• Policy optimization methods:

– ϵreg: This is an additional parameter that controls how much of entropy
regularization is included in the objective function on which the actor
gets updated as introduced by Mnih, Badia, et al. (2016)

– α or η: Learning rate of gradient ascent/descent update

– nepochs: The number of iterations to train the model at each update
step

– b: The batch size. It is the amount of samples included in each gradient
update step sampled from the trajectory

These are the basic parameter settings of both algorithms. More advanced versions
of these algorithms (e.g. PPO, TRPO) introduce more parameters. Nevertheless,
the listing here provides a sufficient overview of which foundational parameters are
required. In general, it can be said that value optimization methods require more
parameters and a more sophisticated approach to find the best parameter setting
than policy optimization methods.



D.4. Problem Application

In this thesis, we apply the RL framework to the RSM problem, providing a
theoretical justification for using RL, and by extension, DRL methods. DRL is
particularly useful when dealing with large state and action spaces. Given that
the underlying RSM problem is based on a dynamic graph, where each graph in-
stance differs, the generalization capabilities of neural networks, which can assign
similar values to similar states (i.e., graph instances), are highly valuable. Since
GNNs are differentiable functions, they can be seamlessly integrated into any DRL
algorithm. In this work, DQN and Proximal Policy Optimization were combined
with GNNs to discover optimal policies using DRL. The preceding sections pro-
vide the theoretical foundation for why DRL is appropriate and justified within
the traditional RL framework. Consequently, the GNN-based RL approach to
solving the RSM problem offers a novel and theoretically grounded perspective on
LA problems in general, and specifically for the RSM problem. Figure C.3 gives a
simplified overview of how the general approach of using DRL with the simulation
environment works. This follows the principles of the DRL algorithms presented
in the previous sections.

Figure D.3.: Simplified visualization of the training workflow of a DRL algorithm
using the simulation environment. At the start, M = {} such that
it gets filled during the training. M can be an experience replay but
also other data structures that are rather used in policy optimization
methods.
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Köstler, Johannes et al. (2023). “Fluidity: Location-Awareness in Replicated State
Machines”. In: Proceedings of the 38th ACM/SIGAPP Symposium on Applied
Computing. SAC ’23. Tallinn, Estonia: Association for Computing Machinery,
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